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Introduction:  
 
The existence of a linkage between financial markets and business cycles has long been known. 

The stock market tends to be a leading indicator of the business cycle since investors look to a 

plurality of indicators and tend to exit the market at or before an economic contraction and return to 

the market during recovery. Nevertheless, there exists a gap between the asset pricing literature and 

the business cycle literature in predicting stock returns, which is a crucial issue for investors, 

portfolio, and risk managers.  

 

Still, the correlation between stock returns and business cycle variables was recognized by different 

theories and models (e.g. by the real business cycle theory (RBC) (Kydland & Prescott, 1982; 

Plosser and Long, 1983), the consumption-based asset pricing model (Rubinstein, 1976; Breeden-

Litzenberger, 1978; Breeden, 1979; Lucas, 1978 and later Campbell & Cochrane, 1999 among 

others), the production-based asset pricing model (Brock, 1982; Cox, Ingersoll, and Ross, 1985; 

Berk, Green and Naik, 1999; Cochrane, 1991; Restoy and Rockinger, 1994,et al.)).  

 

Out of these models, the consumption-based models presented some issues such as, for example, 

poor measurement and hence the uselessness of the consumption Euler equation, which is why the 

consumption processes used in general equilibrium models did not reflect the empirically observed 

consumption. Besides, the consumption was not a good proxy for economic activity. The empirical 

performance of consumption-based approach did not manage to explain the relationship between 

financial variables and the business cycle. Therefore, production-based models, mostly inspired by 

RBC models, were proposed to be predictor models of relation between economic fluctuations and 

expected stock returns because they presented a direct connection between asset returns and 

production variables that indicate changes in economic activity, instead of making use of relatively 

smooth consumption series.  

 

Price-based financial variables (like E/P, dividend yield, book-to-market, size, the latter two being 

the variables of the Fama-French model (Fama & French 1993, 1996), the most used modern model 

in stock returns analysis) have long been considered the only variables capable of explaining the 

stock returns well (Campbell, 2003; Cochrane, 2008; Lettau and Ludvigson, 2009; Lewellen, 2004 

among others) due to their linkage to expected returns through price and the capability of predicting 

returns as long as they capture information about the risk premium. 

 

In 2017 Da, Huang & Yun have published an article “Industrial Electricity Usage and Stock Returns” 

where they have stressed the fact that stock market returns depended on business cycle and 

proposed a macroeconomic variable with superior properties in explaining stock returns, the 

industrial electricity usage growth rate. This variable has a pervasive link to production process 
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(industrial electricity usage is linked to investment and to capacity utilisation because, in case of 

investment, it increases if the production machinery is being enlarged and, in case of capacity 

utilisation, it should increase if the same machinery is being utilized more intensively). Most industrial 

production activities involve the use of electricity which cannot be stored and therefore, it must be 

necessarily employed in the production process, otherwise, it will be wasted. Consequently, the 

industrial electricity tracks production and output in real time. This idea is not new, as it was 

pioneered in Italy by Bodo & Signorini (1987) and Bodo, Cividini & Signorini (1991) who managed to 

forecast the Industrial Production Index in real time using monthly and infra-monthly electricity 

consumption data ahead of the release of the official statistic by the Italian National Statistical 

Institute (Istat, Istituto Nazionale di Statistica). 

 

Zhi Da et al. (2017) show that industrial energy usage performs optimally in the prediction of US 

stock returns. However, despite the previous encouraging results, a deeper understanding of the 

industrial technologies used in the production process suggests that the matter is not so simple. The 

reason for this can be found in the concept of energy efficiency of the equipment that firms use. A 

comparable measure of energy efficiency is the intensity of energy consumption which is the ratio of 

the total final energy consumption (in GJ) and the value added at constant price. Another possible 

efficiency measure is the specific energy consumption per unit of the product. Moreover, the energy 

efficiency is closely linked to the analysis of the carbon footprint (emissions of greenhouse gases 

(GHG)) that each firm leaves during its production process, with special attention paid to the 

emissions of CO2.  

 

So, after applying the Fama & French three-factor model on the Italian stock market, the main task 

of this work is to check whether the industrial electricity usage variable can predict future Italian stock 

returns alone and after the correction using one of energy efficiency measures, and eventually one 

or two “boosters” of energy efficiency improvement (forward energy price change and carbon 

permits’ price change). 

 

The theoretical basis can be found in a production-based model which uses a production technology 

input variable that changes throughout time like, for example, in Burnside, Eichenbaum, Rebelo 

(1995) (BER 95) where the authors present the theory of direct correlation between procyclical 

capital utilisation rates and cyclical changes in labour productivity for different degrees of returns to 

scale. In their study the growth in capital utilisation is approximated by industrial electricity usage 

and capital workweek (the authors make a direct comparison to the empirical finding of the real 

business cycle models). In two specifications out of three presented by these authors, the technology 

is state-dependent. Moreover, the first specification of the relation between capital services and 

electricity usage is by way of Leontief technology. So, only a weak substitutability between factors 
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holds, which is one of the main characteristics of the energy input. The lack of substitutability of the 

energy input becomes apparent if the physical constraints on the production process are correctly 

modelled (e.g. Roma and Pirino (2009)). However, simply relying on a fixed-coefficients production 

process to model the lack of substitutability does not capture the irreversible degradation associated 

with the use of the energy input, entropy, which is the fundamental source of negative externalities 

including GHC. This work modifies the fixed-coefficient energy-production relationship proposed by 

BER 95 to 1) let it vary throughout the sample period based on available energy intensity measures, 

and 2) associate GHC production with the level of energy utilisation. 

 

The model is applied to three energy-intensive Italian industrial sectors, Construction & Materials, 

Chemicals and Basic Resources and attempts to predict the return of a portfolio containing the stock 

belonging to each sector listed on the Italian stock exchange. The monthly time-series of the listed 

stock prices were downloaded from the website www.investing.com, the monthly time-series of the 

electricity consumption of the subsectors of Cement, Chemicals, Steel and Non-ferrous metals were 

kindly provided by Terna s.p.a., which is the supplier of the detailed statistics regarding the electricity 

demand and supply monthly and in real time (the data is being updated every 15 min) based on the 

forecasts and actual data coming from MSD market. All energy-efficiency measures were 

downloaded from Odyssee Mure online database. The same procedure is applied to the Swedish 

data. The only difference is that here the data relative to the industrial electricity consumption come 

from the Statistics Sweden and there is no subdivision in Steel and Non-ferrous Metals of the Basic 

Resources electricity consumption time-series. The rest of the data come from the same sources as 

for Italy. 

 

As for the econometrics of this research, the OLS (ordinary least squares) procedure is used to find 

out the reliability of the prediction variables. Being affected by the seasonality, the energy 

consumption monthly series are seasonally adjusted by means of the TRAMO-SEATS procedure of 

Demetra+ software. The energy efficiency measures being available only at annual level, the Denton 

procedure is used to produce monthly series by adapting the low-frequency values to the fluctuations 

in energy price (PUN for Italy, variable energy price for Sweden) available at higher frequency. The 

monthly time-series of energy price acts like the indicator series which is highly correlated with the 

available data series. 

 

The plan of the thesis is as follows: Chapter 1 contains my paper on the application of the Fama-

French asset pricing model with financial variables to the Italian stock market; Chapter 2 deals with 

the energy input and entropy in the production function and uses both in an ad-hoc asset pricing 

model applied to the Italian stock returns, the structure of the chapter is as follows: Section 2.1. 

presents the review of previous literature, which is relevant for this research and explains in detail 

http://www.investing.com/
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the underlying model, Section 2.2. describes the data and the methodology used, Section 2.3. tests 

the models with financial variables, Section 2.4. presents the empirical results relative to the 

application of the elaborated model, Section 2.5. combines the results of the previous two sections 

and tests the augmented models with financial variables; Chapter 3 enriches the study by performing 

the previous tests in a reduced form on the Swedish data and concludes.  
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CHAPTER 1. Performance of Value- and Size-based Strategies 

in the Italian Stock Market 

 

The stock returns on the Italian Stock Market, characterised by a large number of small listed 

companies, are problematic to predict if the investors and portfolio managers use the standard 

Capital Asset Pricing Model which until not long ago was the most widely used asset pricing model. 

A valid alternative (Fama and French, 1993) that was successful in predicting US Stock returns, is 

tested on the Italian data in this chapter (Pirogova & Roma, 2020). 

 

In particular, it investigates the performance of size- and value-based strategies in the Italian Stock 

Market in the period 2000 - 2018. Previous research (Beltratti and Di Tria (2002)) argued the 

impossibility to define properly value-sorted portfolios due to the inaccuracy of book-to-market ratios 

available for Italian listed stocks. Using more accurate data, we implement portfolios sorting based 

on value and growth stocks, in order to assess the relevance of the value factor in the Italian Stock 

Market. We find that the CAPM fails to explain the cross section of returns on the different strategies 

while the Fama and French (1993) three-factor model provides a better fit. The results show that all 

three factors are significant in explaining Italian stock returns during the sample period. Unlike 

previous studies, which either found no value effect at all (Barontini (1997); Aleati et al., (2000)) or 

no clear-cut results when testing the book-to-market variable (Bruni et al. (2006); Rossi (2012)), we 

find that the value factor is statistically significant, and the associated risk premium is of a 

considerable size. 

 

1.1. Introduction 
 

The Capital Asset Pricing Model (CAPM) postulates a linear dependency of expected stock returns 

on their regression coefficient on the market factor. A number of theoretical and empirical 

inconsistencies of the CAPM model are known, namely the critiques by Roll (1977) and Hansen and 

Richard (1987) on the testability of the model, and empirical inconsistencies like the small-firm effect 

by Banz (1981) and the inability to explain returns of value- and growth-sorted portfolios by Fama 

and French (1993). Such issues have motivated extensive research into alternative models. 

 

In response to the empirical shortcomings, Fama and French (1993) proposed a three-factor model 

in which additional common sources of variation in stock prices are represented by the difference in 

return of high book-to-market stocks and low book-to-market stocks (HML), and the difference in 

return of small and big stocks (SMB). The Fama French (1993) (henceforth FF) model has been very 

successful in explaining stock returns compared to multifactor models based on macroeconomic 

variables in the US. Fama and French (1998) extended their results to other major stock markets. 
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The economic mechanism underlying the pricing impact of the additional FF factors is not however 

completely understood, and it is often interpreted as an example of Ross (1976) Arbitrage Pricing 

Theory. 

 

While there is extensive empirical evidence of the performance of the FF model in the US and other 

major stock markets like the UK and Japan, few papers have investigated it on the Italian stock 

market. There have been contributions by Barontini (1997), Cavaliere and Costa (1999), Aleati et al. 

(2000), Beltratti and Di Tria (2002), Alesii (2006), Brighi and D’Addona (2008), and Silvestri and Veltri 

(2011) who test different multifactor model specification including FF factors. Bruni et al. (2006) and 

Rossi (2012) stick to the FF testing framework and concentrate on SMB and HML. 

 

In general, there was high heterogeneity across all the studies on the Italian Stock Market as far as 

the sample period, model and econometric method were concerned. The sample period range in 

these studies was very wide, from 9 years (Cavaliere and Costa (1999)) to 86 years (Alesii (2006)), 

which led to a different number of observations and consequently different methods of conducting 

the tests.  

 

As for the FF risk factors, previous results broadly support the conclusion that market beta and the 

size factor are needed to explain the variations in Italian stock returns, whereas the book-to-market 

(B/M) ratio was significant in some studies and not significant in others.  

 

Aleati et al. (2000), who studied the sample period 1981-1993, were concerned with the explanatory 

power of HML and SMB for average stock returns compared to the Chen, Roll and Ross (1986) 

macroeconomic factors. Applying different econometric methods, they failed to detect a significant 

role of the HML factor on its own. They applied tests on single stock returns rather than portfolios 

because of the small number of stocks available. Beltratti and Di Tria (2002) considered the sample 

period 1990-2000 and used FF and macroeconomic factors to explain the returns of portfolios sorted 

by industry, size, and dividend yield. They claimed that the poor quality of book-to-market data for 

Italian stocks prevented reliable calculation of the HML factor which they substituted with dividend 

yield. They found contradicting results for the explanatory power of the FF model in cross-sectional 

as opposed to time-series regressions.  

 

Bruni et al. (2006) and Rossi (2012) carried out time series tests on size and value-sorted portfolios 

in the 1989-2004 sample period and concluded in favor of the FF three-factor specification, including 

the HML value-growth factor, against the CAPM, for the explanation of the return on value- and size-

based portfolios, although the significance of HML was not clear cut.  
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In this paper we follow the approach of Cavaliere and Costa (1999), Bruni et al. (2006) and Rossi 

(2012), comparing the FF model with the CAPM in the pricing of size- and value-based strategies. 

We extend the testing period to the most recent sample 2000-2018, which includes the financial 

crises of 2002, 2005 and 2007-2008, with an overall negative stock index return of -48%. Moreover, 

we address a number of shortcomings of the tests of the FF model in the Italian Stock Market used 

in previous studies. We show that B/M data in Datastream, the data source used in many previous 

studies (Beltratti and Di Tria (2002), Bruni el al. (2006) and Rossi (2012) among others) is often 

inaccurate. We use accurate sources for market capitalization and book-to-market data in order to 

correctly define the SMB and especially the HML factor. We also overcome the incompleteness of 

the universe of stocks used by Bruni et al. (2006) and Rossi (2012) who tested an arbitrary small 

sample of 109 ordinary stocks that were listed in the period 1989-2004, excluding savings and 

preferred stocks1, representing only about 50 percent of the market capitalization2.  

 

Our empirical contribution is to identify more accurate data sources and show that a properly defined 

HML factor is a statistically significant explanatory variable for the return of value- and size-sorted 

portfolios of Italian stocks. Consistent with international evidence, these returns cannot be explained 

by the CAPM. Moreover, the risk premium on the HML factor in our sample is about 5% on a yearly 

basis and is statistically significant. 

 

The plan of the paper is as follows: in Section 2 we describe the data and the problems detected 

with often-used B/M and market capitalization data, which we check against reliable sources. We 

deal with the construction of the sorted portfolios and FF factors based on our more accurate data. 

Section 3 contains statistics on the sorted portfolio returns. In Section 4 we apply a single factor 

model and the FF model to the returns of the size- and value-sorted portfolios and show that the 

additional HML and SMB factors are essential explanatory variables for these strategies. We also 

analyze the key components of HML factor return. Section 5 concludes. 

 

1.2. Data and Research Methodology 
 

We use all the stocks traded in the period between the end of June 2000 and the end of June 2018. 

The cumulative sum of stocks used in our variable sample, considering listed stocks and new listings, 

is 499. These stocks had a positive volume at some time in the sample period. The available stocks 

were grouped into portfolios according to size-based and value-based strategies by sorting stocks 

in ascending order, first according to market capitalization at the end of June each year, and then 

 
1 FF (1993) noted that the assignment of book value to preferred stocks requires specific assumptions. 
2 Using the same source, we could not exactly replicate their results. It was not possible to get the exact data used by 
the authors due to the fact that some companies have merged with others and Datastream (and Bloomberg) merged 
their relative values, book-to-market and prices. 



11 
 

according to book-to-market at the end of the previous year. We considered a variable sample that 

takes into account new listings and delistings. In order to be included in a portfolio, a stock must be 

traded at the end of June and at the end of the previous year. We used adjusted month end prices 

to compute monthly returns for each stock over the sample period, and if a monthly return was 

missing the stock was excluded from the portfolio in that month. This narrows the sample. The 

number of stocks listed and processed in each year of our sample period ranges between 224 and 

301. Hence, we decided to follow Bruni et al. (2006) and Rossi (2012) and sorted stocks into 16 

portfolios instead of 25 as in FF. 

 

We took special care in addressing the quality of the data. As already mentioned, because of the 

“poor quality of the data regarding the book-to-market”, Beltratti and Di Tria (2002) gave up the HML 

factor and chose the dividend yield as a proxy. We obtained adjusted stock returns, book-to-market 

and market capitalization data from Datastream. We also obtained end-of-June market capitalization 

data directly from the Italian Stock Exchange (Borsa Italiana), and book-to-market data from the 

publication Indici e Dati by Mediobanca S.p.A. (Mediobanca), which contains carefully processed 

data and is considered an authoritative source for Italian listed-stock statistics. We also used stock 

price data from Bloomberg to counter check anomalous returns which we corrected in few cases. 

Our market excess return is computed using FTSE Mib and 3-month Euribor. 

 

We considered whether the book-to-market and market capitalization data available in the 

Datastream database can be reliably used in the sorting procedure. The B/M value is based on the 

book value attributed to each stock, compared to its market value. The book value is obtained from 

company financial statements at the end of each calendar year, i.e. 31st December, and used in the 

sorting at the end of June of the following year, when this information is certainly in the public domain. 

When a company has different categories of stocks other than common stock outstanding, the 

attribution of book value to the different categories depends on the seniority of stockholders in case 

of liquidation. We investigated the reliability of B/M ratios for individual stocks by comparing the 

information available from Datastream and from Indici e Dati by Mediobanca. 

 

We also checked whether market capitalization data available in Datastream is reliable by comparing 

it with data obtained directly from the stock exchange Borsa Italiana. 

 

Table 1 contains summary statistics on the discrepancies of year-end B/M values in Datastream and 

Mediobanca for all available stocks, as well as discrepancies between 30th June market 

capitalization values in Datastream and those obtained from the Italian Stock Exchange (about 5000 

observations for which we have both values). While small discrepancies may be due to rounding, 

B/M point values in Datastream are often substantially different from those published by Mediobanca, 
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and at times even negative, providing some support for the argument that the Italian B/M ratios 

available in commercial databases are not reliable and need to be carefully considered before they 

are used. A lesser issue was detected for market capitalization values.  

 

Table 1: Frequency of large deviations between data sources 

 

 Book-to-Market Market Capitalization  

 Datastream vs 
Mediobanca 

Datastream vs Borsa 
Italiana 

 

 Threshold value of deviation No. of 
Deviations 

Freq.cy No. of 
Deviations 

Freq.cy  

 2% 1395 27.5% 259 4.8%  

5% 847 17.2% 104 1.9%  

10% 535 10.8% 89 1.6%  

15% 372 7.5% 78 1.4%  

Note: The deviations are calculated as the percentage difference of the Datastream value from the Mediobanca value for 

Book-to-Market data on 31 December and as the percentage difference of the Datastream value from the Borsa Italiana 
value for the market capitalization on June 30, when both values are available. Observations that exceed the thresholds 
are reported.  

 
In the FF framework B/M and market capitalization values can be used to devise specific trading 

strategies through sorted portfolios, and also to derive more general factors that can explain the 

expected return of specific strategies, namely the HML and SMB. It is important that the quantiles 

into which stocks are sorted are computed according to accurate B/M and market capitalization data. 

Wrong values for market capitalization and book-to-market alter the break points for the computation 

of quantiles and modify the composition of sorted portfolios3. 

We sorted stocks into quartiles according to June market capitalizations from Borsa Italiana and 

year-end B/M from Mediobanca, which we consider to be more reliable. Table 2 describes the 

average of the quartiles into which stocks are binned by market capitalization and B/M value in order 

to simulate strategies based on value and size. High B/M indicates value stocks that the stock market 

undervalues with respect to their equity. The sorting procedure produces one such table defining 16 

portfolios at the end of June, when portfolios are rebalanced, for every year between 2000 and 2018, 

and here only the average of the break points are reported. As is well known, small stocks in Italy 

can be really small, with market capitalizations as low as 0.3 million euro. High B/M values are, on 

 
3 A problem with the Datastream data is also the tendency to report the previous period market capitalization and 
B/M even after a stock is no longer listed. If not identified, this issue increases the number of stock processed every 
year in sorting by size and B/M, altering the definition of quantiles and the composition of value and size portfolios. As 
returns for stocks which are no longer listed are not available, the portfolios shrink in size when their returns are 
computed, and contain the wrong stocks, making it difficult to attribute returns to value and size categories.  
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average, more pronounced for small stocks, with top (average) B/M values of about 5, which are 

twice as high as B/M values found for large stocks, about 2.5. Large stocks tend to have lower B/M. 

Over time (not reported), B/M tends to increase in our sample for stocks of all sizes, but small stocks 

in recent years have sometimes reached B/M values over 9. We labeled the 16 portfolios P1 through 

P16, characterized by size and value according to the structure described in Table 3. 

 

The additional FF risk factors HML and SMB result from partitioning the same stocks into six 

portfolios by sorting according to market capitalization into two groups, small and big, and then 

sorting these two groups by B/M according to percentiles corresponding to 30, 40 and 30 percent 

into Growth, Neutral, and Value stocks. The additional factors are then defined as in FF. 

 

1.3. Sorted Portfolios Returns 
 

The monthly returns of each of the sixteen portfolios were calculated from the end of June of each 

year for the subsequent twelve months, starting with July. We computed equally weighted and value 

weighted returns. The calculation was repeated for each year to produce returns for the whole 

duration of the sample. 

Table 2: Average Size and B/M Quartiles 

 

Size Growth    ⟶   Value 
(Million Euro)               B/M   

 0.3 - 57 0.10-0.51 0.51 - 0.91 0.91-1.49 1.49-4.99 

57-198 0.12-0.59 0.59 - 0.91 0.91-1.41 1.4-4.07 

198-946 0.12-0.47 0.47 - 0.8 0.8-1.33 1.33-3.65 

946-6,916 0.10-0.36 0.36 - 0.68 0.68-1.04 1.04-2.49 

 
Note: The first column describes the average size of stocks grouped into quartiles in ascending order during the 

sample period June 2000 - June 2018. On the same row of the size bracket there are reported the average B/M 
values for each of the four quartiles into which a size group is subdivided. 
Abbreviation:  B/M, book-to-market ratio. 

 
Table 4 shows descriptive statistics for the time series of equally weighted portfolio returns 

obtained by this procedure. With two exceptions (P5 and P6), the average return on the size-

value strategies is positive. Returns on the first portfolio (P1) which contains the smallest stocks 

with the lowest B/M are the most erratic, as it can be seen from the wide range and descriptive 

statistics in Table 4. 
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Table 3: Names of Size-/Value-sorted portfolios 

 
There are signs of a size effect: when the size of the companies in the portfolios increases, 

there is a certain tendency in portfolio returns to decrease which means that the sample 

shows an inverse relationship between size and stock returns. The portfolios containing the 

larger stocks (P13-P16) earn a return somewhat lower than those containing the smaller 

stocks (P1-P4). If portfolios with different B/M ratio are considered, there are also signs of a 

value effect: as the ratio grows, the portfolio returns tend to grow, as the high B/M portfolios 

P4, P8, P12 and P16 show higher returns than the corresponding low B/M portfolios of the 

same size, namely P1, P5, P9 and P13. When we consider value weighted returns, Table 5 

shows that the outliers in the return of small size portfolios are evened out and the 

small/growth portfolio P1 no longer has a positive return. As the B/M ratio of the portfolio 

grows, once again the average return tends to grow: P4, P8, P12 show higher returns than 

the corresponding low B/M portfolios of the same size: P1, P5, and P9, however the big/value 

portfolio P16 has about the same return as the big/growth portfolio P9. 

 

Table 6 provides a similar analysis for the equally weighted and value weighted HML and 

SMB factors. These factors correspond to excess returns, and their average return 

represents the risk premium for a unit exposure to the factor. Differently from the case of 

macroeconomic factors (Mazzariello and Roma (1999), Panetta (2002)) no further estimation 

is needed. 

 

 

 

 

 

 



15 
 

Table 4: Descriptive statistics of the equally weighted sorted portfolios returns 

 

  
 

Table 5: Descriptive statistics of the value weighted sorted portfolios returns 

 

 
 
From Table 6 the two risk premia for the equally weighted factors, λHML and λSMB are equal 

to 0.4% and 0.035%, respectively, on a monthly basis, or 4.8% and 0.42% annualized. The size 

of the value factor risk premium is considerable. On the other hand, the average of the stock 

market index excess return over the risk-free rate, λMK, was negative over the sample period 

and equal to -0.32%, or -3.8% annualized.  

 

Table 6: Descriptive statistics of the three risk factors 

 

 
Abbreviations: HML, high book-to-market stocks and low book-to-market stocks; SMB, small and big stocks. 
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Table 7 contains the correlation matrix of all equally weighted variables. We can see that the size 

factor SMB is correlated positively with the return of the smallest stocks portfolios (P1-P12), and the 

correlation decreases as size increases, with portfolios containing larger stocks (P13-P16) showing 

inverse correlations with the size factor, which is what we would intuitively expect. A pattern of 

correlation between the HML factor and portfolio returns is also evident, with the return of the value 

portfolios P4, P8, P12, and P16 positively correlated with this factor and P1, P5, P9 and P13 

negatively correlated with it. 

  

Table 7: Correlation of portfolio returns and factors 

 

 
Abbreviations: HML, high book-to-market stocks and low book-to-market stocks; SMB, small and big stocks. 

 
The correlation between HML and SMB is low and equal to -0.247 showing that these factors capture 

different aspects of the sample of stock returns. 

 

When value weighted factors are considered (Table 6) the risk premium of the size factor (SMBVW) 

becomes negative, and hence no size effect can be detected. On the other hand, the risk premium 

on the value weighted HML factor (HMLVW) remains highly positive, and it is larger (0.0045 on a 

monthly basis, 5.4% annualized, more than twice its standard deviation), indicating that big stocks 

rather than small stocks are the source of the value premium. 
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1.4. Empirical Performance of the CAPM and FF Models 
 

We now check whether a single factor model like the CAPM can rationalize the returns on the size- 

and value-based strategies represented by the 16 sorted portfolios in our sample and compare it to 

the FF model. We estimate the regression 

 

(Rp – Rf)t = αp + 𝛽𝑀𝐾
𝑝

 (Rm – Rf)t + 𝛽𝐻𝑀𝐿
𝑝

 HMLt + 𝛽𝑆𝑀𝐵
𝑝

 SMBt + 휀𝑡
𝑝
    (1) 

 

where the term on the left is the excess portfolio return, the term (Rm – Rf) is the market excess 

return and 𝛽𝑀𝐾 is the market beta, SMB and HML are the FF additional risk factors, and 𝛽𝐻𝑀𝐿 and 

𝛽𝑆𝑀𝐵 are the corresponding regression coefficients. Omitting the additional HML and SMB factors 

results in the CAPM, other ways we have the FF model.  

 

In the regression (1), p = 1, 2, …, 16 indicates portfolios, t = 1, 2, …, 216 indicates monthly 

observations. 

 

Since the time series regressions are in excess return form, if the model holds the intercept αp should 

be statistically indistinguishable from zero. So, we test the hypothesis H0: α
p = 0. In Table 8 we see 

the results for the one-factor model (CAPM) applied to equally weighted returns. In the different 

panels, estimated coefficients correspond to portfolios according to the structure described in Table 

3. The market index excess return is always highly significant in explaining the size and value 

strategy returns, but much less so for small size portfolios P1-P4, represented in the first row of each 

panel of the Table 8. The R2 of the regressions clearly increase with size, with the first portfolio (P1, 

small/growth) showing the lowest value, 0.17. The hypothesis H0 is seldom rejected. However, when 

we look at the point values of the 𝛽𝑀𝐾 coefficients and compare them with the average returns of the 

portfolios from Table 4, we do not see the positive linear association that the CAPM predicts, that is 

the CAPM is unable to characterize the expected return of size and value-based strategies in our 

sample. The left scatter of Figure 1 shows a lack of any positive linear association between the 

average return on the equally weighted strategies and their market beta for this sample, hence the 

CAPM produces inconsistent results.  
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Table 8: CAPM regression results - equally weighted 

 

 
Note: The result of the OLS regression of the CAPM (Rp – Rf)t = αp + 𝛽𝑀𝐾

𝑝
 (Rm – Rf)t + 휀𝑡

𝑝
 for the value- and size-sorted 

portfolios p = 1,2,…,16 over the sample period June 2000 to June 2018, using monthly equally weighted returns. In the 
model (Rp – Rf)t is the excess return of the sorted portfolio in month t, and (Rm – Rf)t is the excess return on the market. 
In parenthesis are reported the t-statistics of the coefficients computed using robust standard errors. 
Abbreviation: CAPM, capital asset pricing model.  

 

 
 

Figure 1 CAPM and FF Model 2000-2018 - Equally Weighted. The scatter on the left depicts, on the y axis, the 

average return on the 16 portfolios as in Table 4 against, on the x axis, the betas from the CAPM. In the scatter on the 
right the same average returns are plotted against the projection  𝛽𝑀𝐾 𝜆𝑀𝐾 + 𝛽𝐻𝑀𝐿 𝜆𝐻𝑀𝐿 + 𝛽𝑆𝑀𝐵 𝜆𝑆𝑀𝐵  from the FF model 
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(1) on the x axis. The dashed line is the OLS fit. CAPM, capital asset pricing model. HML, high book-to-market stocks 

and low book-to-market stocks; SMB, small and big stocks. 

 

In Table 9 we show the results of the FF model applied to the same equally weighted portfolio returns. 

The fit of the regression is materially improved. The coefficient on the size factor SMB is significant 

in all cases except for two big stock portfolios (P14 and P16) in the last row of the panel, and its 

values tend to decrease as size increases, as expected. Coefficients on HML are more variable in 

significance, although they are clearly positive and significant for value portfolios (P4, P8, P12, P16) 

and negative for growth portfolios (P1, P5, P9, P13). 

 

Table 9: FF Model regression results - equally weighted 
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Note: The result of the FF model (Rp – Rf)t = αp + 𝛽𝑀𝐾
𝑝

 (Rm – Rf)t + 𝛽𝐻𝑀𝐿
𝑝

 HMLt + 𝛽𝑆𝑀𝐵
𝑝

 SMBt + 휀𝑡
𝑝
 for the value- and size-

sorted portfolios p = 1,2,…,16 over the sample period June 2000 to June 2018, using monthly equally weighted returns. In 
the model (Rp – Rf)t is the excess return of the sorted portfolio in month t, and (Rm – Rf)t is the excess return on the market, 
HMLt and SMBt are the additional FF factors. In parenthesis are reported the t-statistics of the coefficients computed using 
robust standard errors. Significant values at 5% or less are in bold. 
 
 

When we look at the ability of the FF model to account for average return in the cross section of 

equally weighted portfolios, the scatter on the right of Figure 1 shows some positive linear 

association between average returns and the projection of the three risk factors of the FF model. 

The fit is however visibly altered by the leftmost point, which represents portfolio P1, small/growth. 

We note in the comment to the descriptive statistics in Section 3 that the return of this portfolio 

containing the smallest stocks has somewhat erratic behavior. 

 

When we consider value weighted strategies, the results of the regressions reported in Tables 10 

and 11 show the different performance of the two models. The single factor model (CAPM) produces 

better results for small size value weighted portfolios compared to the equally weighted case, once 

the smallest stocks are given less weight (the R2 on the first small/growth portfolio increases from 

0.17 to 0.48), but the additional HML and SMB factors of the FF model add explanatory power for 

the strategies, producing a marked increase in R2 throughout the 16 portfolios. The SMB factor is 

significant for all but two of the largest size portfolios, while the HML factor coefficient is positive and 

significant for value strategies and negative for growth strategies. Again, the single beta model does 

not explain the cross section of average returns on the strategies. The left scatter of Figure 2 shows 

a negative linear relationship between average value weighted returns on the 16 strategies and their 

beta on the market, which is not compatible with the CAPM, while, in the right scatter, the prediction 

from the FF model provides a linear cross-sectional fit with positive slope.  
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Table 10: CAPM regression results - value weighted 

 

 
Note: The result of the OLS regression of the CAPM (Rp – Rf)t = αp + 𝛽𝑀𝐾

𝑝
 (Rm – Rf)t + 휀𝑡

𝑝
 for the value- and size-sorted 

portfolios p = 1,2,…,16 over the sample period June 2000 to June 2018, using monthly equally weighted returns. In the 
model (Rp – Rf)t is the excess return of the sorted portfolio in month t, and (Rm – Rf)t is the excess return on the market. In 
parenthesis are reported the t-statistics of the coefficients computed using robust standard errors. Significant values at 5% 
or less are in bold. 
Abbreviation: CAPM, capital asset pricing model. 
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Table 11: FF Model regression results - value weighted 

 
 

 
 

Note: The result of the FF model (Rp – Rf)t = αp + 𝛽𝑀𝐾
𝑝

 (Rm – Rf)t + 𝛽𝐻𝑀𝐿
𝑝

 HMLt + 𝛽𝑆𝑀𝐵
𝑝

 SMBt + 휀𝑡
𝑝
 for the value- and size-

sorted portfolios p = 1,2,…,16 over the sample period June 2000 to June 2018, using monthly equally weighted returns. In 
the model (Rp – Rf)t is the excess return of the sorted portfolio in month t, and (Rm – Rf)t is the excess return on the market, 
HMLt and SMBt are the additional FF factors. In parenthesis are reported the t-statistics of the coefficients computed using 
robust standard errors. Significant values at 5% or less are in bold. 
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Figure 2 CAPM and FF Model 2000-2018 - Value Weighted. The scatter on the left depicts, on the y axis, the 

average return on the 16 portfolios as in Table 5 against, on the x axis, the betas from the CAPM. In the scatter on the 

right the same average returns are plotted against the projection  𝛽𝑀𝐾 𝜆𝑀𝐾 + 𝛽𝐻𝑀𝐿 𝜆𝐻𝑀𝐿 + 𝛽𝑆𝑀𝐵 𝜆𝑆𝑀𝐵  from the FF model 
(1) on the x axis. The dashed line is the OLS fit. CAPM, capital asset pricing model; HML, high book-to-market stocks 
and low book-to-market stocks; SMB, small and big stocks. 

 
 

 
 

Figure 3 Frequency distribution of returns for Growth and Value stocks. The dashed line, along the shaded 

area, represents the frequency distribution of returns on Growth stocks, the solid line the frequency distribution of returns 
on Value stocks. Sample period 2000-2018. 
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Figure 4 Frequency distribution of returns for Growth and Value stocks. The dashed line, along the shaded 

area, represents the frequency distribution of returns on Growth stocks, the solid line the frequency distribution of returns 
on Value stocks. Sample period 2000-2018. 

 
 

1.4.1. Analysis of the HML factor 
 

The pricing impact of the SMB factor, which characterizes a strategy of going long on small stocks 

and short on large stocks, is usually linked to the specific risks of small stocks, mostly their lack of 

liquidity and their lower resilience to downturns in the business cycle. Given the importance of small 

stocks in the Italian Stock Market, it is not surprising that the SMB factor plays an important role in 

explaining stock returns, as already established in the literature discussed in the Introduction. In the 

down market we analyzed, the risk premium for the size strategy is not unequivocally positive. 

 

On the other hand, in the 2000-2018 sample the value-based strategy produces high positive returns. 

The HML factor, which characterizes the strategy of going long on high B/M stocks and short on low 

B/M stocks, has an associated risk premium of 4.8% on a yearly basis in the 2000-2018 equally 

weighted sample, and a risk premium of 5.4% on a yearly basis in the value weighted sample, more 

than twice its standard deviation. In what follows we try to look at the determinants of its returns by 

examining in more detail the statistical properties of the returns of value and growth stocks in the 

sample. 

 

We took the returns of all stocks in the 30% top and bottom percentiles of the HML factor sorting and 

looked at their frequency distribution. 
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The large mean return of the equally weighted HML factor in Table 6 comes from the difference 

between the mean return of all value stocks and all growth stocks included in the HML factor. In turn, 

the mean return of value and growth stocks is the sum of returns on small and big value and growth 

stocks. The frequency distribution of these returns helps to understand the differences in average 

returns of value and growth strategies. 

 

Table 12: Frequency distribution of value and growth stock returns 

 

 
 
In particular, from Figures 3 and 4 and from Table 12 we see that value stocks have a somewhat 

higher frequency of large returns between 10 and 20 percent and growth stocks have a higher 

frequency of both small (0 to minus 5 percent) and large negative returns. When we consider small 

and big stocks separately (Figure 3), small growth stocks have a higher frequency of negative returns 

throughout the support, and small value stocks have more positive returns in the range 5 to 10 

percent, while big value stocks have more positive returns between 10 and 20 percent. Table 13 

reports average returns by year, which are generally of the same sign as the stock index return with 

a tendency for value stocks to do better than the market. 
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Table 13: Mean return of value and growth components of HML by year 

 

 

 

Note: SG denotes the return on the small/growth component of HML, SV the return on the small/value component, BG 

the return on the big/growth component, BV the return on the big/value component, Rm is the return of the stock index. 

Abbreviation: HML, high book‐to‐market stocks and low book‐to‐market stocks. 

 

When we looked at the high returns of value stocks from a qualitative point of view, we found many 

cases in which the high positive return was associated with a merger-arbitrage event (mergers, 

acquisitions), unexpected positive reporting by the company or company turnaround plans that 

occasionally produced large changes in price. Such returns involve risks which are not fully 

described by general market risk but are not idiosyncratic either. Our conjecture is that a very high 

risk premium recorded for value stocks during the sample period is partly due to these events. 
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1.5. Conclusion 

We investigated the risk return characteristics of size- and value-based trading strategies in the 

Italian stock market in the 2000-2018 sample period.  

 

We used data from Borsa Italiana and Mediobanca in order to correctly define value- and size-based 

strategies and the HML factor. Unlike previous studies, our analysis is based on all available stocks, 

rather than partial samples.  

 

In the sample period, the time series of the return on these strategies are poorly explained by a 

single factor model, and in the cross section, average returns are not positively related to market 

beta, contradicting the CAPM. This result is in line with previous evidence and requires the definition 

of additional risk factors to rationalize the observed returns on these strategies. The HML and SMB 

factors proposed by Fama and French (1993) help explain the returns on value- and size-based 

strategies in a consistent way. The R2 of the FF model is consistently higher than that of the CAPM 

for every strategy. In the FF model, the return on small stock portfolios is significantly and positively 

associated with SMB, and the return on value portfolios is significantly and positively associated with 

HML. 

 

While previous research did not confirm the pricing relevance of the HML factor, we show its 

significance in pricing aggregate stock returns in our sample. 

 

In the 2000-2018 period, in which the stock market showed a negative return, the risk premium of 

the value-based strategy represented by HML is considerable, and about 5% annualized. By 

analyzing the distribution of the individual components of this return in detail, we find that it can be 

attributed to a large extent to a higher frequency of large returns on value stocks. This pattern is 

compatible with the idea that value stocks are subject to turnaround, acquisitions, and merger-

arbitrage activities, which occasionally produce large changes in price. 
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CHAPTER 2. Asset Pricing and Industrial Electricity Usage 
 
Pursuing the aim of finding new business cycle predictors of future stock returns, the study in this 

chapter uses the industrial electricity usage variable to predict the fluctuations in Italian stock market 

inspired initially by the work of Zhi Da et al. (2017). The reason for using industrial electricity usage 

for this matter lies in the difficulty in storing energy. Therefore, the logic suggests that the changes 

in energy consumption can be used to track industrial production in real time. Real business cycle 

variables, like production, comove with stock market returns. Zhi Da et al. (2017) show that industrial 

energy usage performs optimally in the prediction of US stock returns. However, despite the previous 

encouraging results, a deeper understanding of the industrial technologies used in the production 

process suggests that the matter is not so simple. The reason for this can be found in the concept 

of energy efficiency of the equipment that plants use. A comparable measure of energy efficiency is 

the intensity of energy consumption which is the ratio of the total final energy consumption (in GJ) 

and the value added at constant price. Another possible efficiency measure is the specific energy 

consumption per unit of the product. Moreover, the energy efficiency is closely linked to the analysis 

of the carbon footprint (emissions of greenhouse gases (GHG)) that each firm leaves during its 

production process, with special attention paid to the emissions of CO2. So, the task of this work is 

to check whether the industrial electricity usage variable can predict future Italian stock returns, either 

alone or after the correction using one or more energy efficiency measures. 

 

2.1. Literature Review 

 

2.1.1. Production-based Asset Pricing and Industrial Electricity Usage 

 

Prediction of stock market returns is a central issue in asset allocation, risk, and portfolio 

management. However, the use of business cycle variables for this matter is usually less preferred 

compared to the financial variables due to the former’s weak performance. This study attempts to 

identify a real variable capable of competing with financial variables in the explanation of stock 

returns, based on the connection between key inputs of the production function of each firm and the 

sector stock market returns. 

 

Generally speaking, the matter of the linkage between the production function and stock returns is 

not new and was largely investigated by many economists, starting with Cochrane (1991,1993, 1996, 

2005 and other papers) who elaborated on asset pricing with production data.  

 

The underlying setting is characterised by perfect competition, compete markets and neoclassical 

environment (Y=f (L, K, productivity shocks) as in RBC models).  
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The consumption-based asset pricing was taken as the point of departure for this theory mostly 

because in it the discount factor (m) could be inferred without solving any type of equilibrium 

problems, neither partial, nor general. The approach used here, following the production-based asset 

pricing theory by Cochrane (1991 and the subsequent works), links the discount factor to the 

marginal rates of transformation (instead of the marginal rates of substitution as for the consumption-

based version) of output across states and is valid for any type of preferences. The production set 

is smooth, and the technology of the production process is without kinks. The asset pricing equation 

under consideration is of the following form: 

 

Et-1 [mt 𝑅𝑡
𝑒

] = 0                     (2) 

 

Where m is the discount factor (or the pricing kernel), Re is the asset return net of the risk-free rate. 

The equation literally reads that the excess stock returns have a zero mean. 

 

As Balvers and Huang (2006) point out, the pricing kernel m is in real terms, hence, the return should 

be either corrected for inflation or taken as the excess return. As most authors, Balvers and Huang 

(2006) choose to use excess returns. By decomposing the equation (2), one may write:  

 

Et-1 [𝑅𝑡
𝑒

] = - 
𝐶𝑜𝑣𝑡−1 (𝑚𝑡,   𝑅𝑡

𝑒 )

𝐸𝑡−1[𝑚𝑡]
                (3) 

 

And, therefore, the mean excess return depends on the covariance of excess returns with the 

discount factor m. 

 

According to the production-based asset pricing, the discount factor m is a function of production 

factors (output, investment, capital stock, inventories etc.), or firm’s productivity. In Balvers and 

Huang (2006) it is modelled as follows: 

 

m = λ 
𝛼

𝜃1+ 𝛼
                    (4) 

 

where λ is the constant Lagrange multiplier, ε is the state-contingent level of productivity, θ is the 

level of natural productivity, α > 1 plays the role similar to the risk aversion coefficient in the utility 

theory - it ensures the strict concavity (and smoothness) of the production possibilities frontier. 

 

The dynamic version of the last equation which links the discount factor to productivity growth is: 
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𝑚𝑡+1 = λt (
𝑡+1

𝑡
)𝛼(

𝜃𝑡+1

𝜃𝑡
)−(1+𝛼)                 (5) 

 

By following Belo (2010), Cochrane (2020) generalises the investment-return models considering 

the possibility of endogenous decision on the productivity level and the level of natural productivity 

for each producer. In this setting ε and θ are chosen by the producer for each state. 

 

Essentially, these authors state that stock returns are linked to the discount factor through the 

productivity growth which is a complex result of the output, investment growth, working hours and 

some other production inputs.  

 

Hence, the search for a variable capable of predicting asset prices most precisely brings many 

scholars of asset pricing to directly consider the industrial production index, strictly correlated to the 

real economy, as the leading predictor.  

 

Still, there is another aspect to be considered when making decisions in financial markets, which is 

timing. Prediction of future stock market returns by using the industrial production, a lagged variable 

not available at high frequency, may expose the market participants to the risk of information 

asymmetries, which give rise to timing issues, and, thus, may make the forecasting objective 

unreachable.  

 

Some economists such as Bodo and Signorini (1987, 1991) pointed out the timing problem on the 

basis of Italian data. In their articles it is the starting point of analysis that tries to estimate the 

industrial production index in Italy, or better, to forecast it in the short-term. The main concern is 

which variable must be employed to predict the industrial production, that would remove or effectively 

mitigate the timing problem which arises when a “lagged variable” is used. Bodo and Signorini chose 

the electric energy consumption. At that time this variable was published by Enel s.p.a. more 

promptly than the industrial production index. So, the authors tried to forecast Italian industrial 

production index based on the energy data provided by Enel s.p.a., which they adjusted for 

seasonality applying the concept of energy degree-days (EDD)4. The corrected series were then 

tested with the ARIMA (the autoregressive integrated moving average) model which is known to 

provide forecasts on a non-stationary data series. In this model the predictor variables are lagged, 

and the error term is a random variable. Speaking in economic terms, such error term can be 

 
4 Energy Degree Days are the days when the outside temperature is either very high or very low with respect to the standard (20°C for 
Italy before 2022). This fact leads to higher consumption of energy either to heat or to cool the indoor environment. The relationship 
between energy consumption and temperature has a U-shape form, having peaks of consumption at the ends of the temperature range 
and the minimum in the point of conventional “comfortable” temperature (20°C in Italy). 
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considered as a shock in the market. After the ARIMA analysis the authors used a business survey 

on the expectation of future industrial production to countercheck the results. This choice was forced 

by the availability of the data. At the time of Bodo & Signorini’s study, the institution which provided 

this type of information, ISCO (Istituto Nazionale per lo Studio della Congiuntura), published survey 

results twenty days before the issue of the production index thereby mitigating the timing problem. 

The conclusion which Bodo et al. draw in their work is that the forecast of industrial production using 

electric energy consumption combined with a business survey can lead to satisfactory results.  

 

At that point, having the industrial production as the main predictor of asset returns, it may be 

reasonable to expect that the electricity consumption explains stock returns too. 

 

In this respect, it is useful to refer to the article by Zhi Da et al. (2017), where the authors explained 

how electric energy consumption data could be used to achieve this goal. In fact, that work presented 

an analysis which aimed at estimating the explanatory power of electric energy consumption over 

the U.S. stock market, comparing the results with other models that use such variables as Output 

growth, Capacity utilisation, Dividend-Price ratio, Book-to-Market ratio, Inflation, and long-term 

Interest rates. Summing up, the study produced quite satisfactory results as referred to the U.S. 

market, even outperforming some financial models. Whether the results will be the same for the 

Italian market is the question that this research is trying to answer.  

 

Neither Zhi Da et al. (2017), nor Bodo and Signorini (1987, 1991) used aggregate national raw data 

on electric energy consumption in their studies. Their interest was only in the industrial energy 

consumption, and the inclusion of the share of domestic energy consumption, strongly affected by 

seasonality among other issues, would most probably make the statistical results unreliable. 

Eventual increases in energy consumption of the domestic sector, either due to seasonality or not, 

do not depend on a greater production at industrial level. Besides, seasonal increases in energy 

consumption of the industrial sector do not reflect changes in sector productivity. Therefore, 

seasonality and domestic energy consumption were removed from the data series subject to 

analysis.  

 

The difference between the works of the authors lies in the final output: Zhi Da et al. (2017) estimated 

the excess stock return using electricity consumption and industrial production as predictors; while 

Bodo et al. (1987, 1991) tried to explain the Italian industrial production index, considered as the 

dependent variable. Therefore, the aim of Bodo et al. (1987, 1991) was limited to understanding how 

the energy consumption fluctuations affected the industrial production, while Zhi Da et al. (2017) 

wanted to understand how these shifts affected the stock market. The actual difference is that Bodo 

et al. made their work considering just the real economy variables. Conversely, Zhi Da et al. (2017) 
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wanted to understand the effect, which a real variable could produce on financial markets, more 

precisely on the stock market, filling up the gap between “the asset pricing literature and the business 

cycle one”. The results presented in Zhi Da et al. (2017) for the U.S. market are in line with the idea 

of a countercyclical market risk premium. The electricity growth has a negative coefficient, which is 

consistent with the above-mentioned theory. The reason for that is the fact that in a market recession 

the expected returns for an investor will be higher to compensate them for the risk of investment in 

an underperforming stock; on the contrary, when a stock is performing well, following for instance 

an expansion of the market, the premium requested by a risk-averse investor is lower than in the 

first case. This idea is explained well by Fama and French (1989).  

 

The results obtained by Zhi Da et al. (2017) for the US stock market seem to confirm the predictive 

power on stock returns of such real variable as industrial electricity usage. In the present work these 

models are tested on the Italian data.  

 

The timing is an issue also for the Italian data: the industrial production index is issued by Istat 

(Istituto Nazionale di Statistica, the Italian National Statistical Institute) with a delay of one – one and 

a half months which means that it is impossible to track production data in real time. Therefore, 

monthly stock returns cannot be associated with the contemporaneous industrial production data 

point. However, Terna spa5, the grid operator for electricity transmission in Italy, provides detailed 

hourly information on the withdrawals in different Italian operational areas from the national electricity 

grid. It publishes their own index IMCEI (Monthly Industrial Electrical Consumption Index), a proxy 

of the Industrial Production Index, both in month-over-month and year-over-year versions. It is issued 

at the end of each month based on the data of that month. Industrial electricity consumption data at 

annual level are freely available on Terna’s website, monthly industrial data are available upon 

special request. The electricity consumption data have a better timing and, hence, can be associated 

with contemporaneous stock returns. 

 

2.1.2. Variable Capital Utilisation Model (BER 95) 

 

One of the main reference articles for the theoretical foundation of the present research is the one 

by Burnside, Eichenbaum and Rebelo (1995) (BER 95) who presented the theory of direct 

correlation between procyclical capital utilisation rates and cyclical changes in labour productivity 

for different degrees of returns to scale. In their study the growth in capital utilisation was 

approximated by industrial electricity usage and capital workweek. The authors made a direct 

 
5 www.terna.it 
 

http://www.terna.it/
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comparison with the empirical finding of the real business cycle model (the Solow residual as the 

measure of capital services). 

 

The paper addressed the puzzle of a seeming statistical insignificance of capital in explaining 

changes in output. To this regard BER 95 proposed a better measure for capital services, the 

industrial electricity usage, which produced better inference results.  

 

The authors emphasized the importance of their measure in affecting cyclical labour productivity and 

the latter being the main cause of economic fluctuations. This thought was borrowed from the RBC 

models.  

 

BER 95 put emphasis on cyclical movements of capital utilisation and labour hoarding by following 

the trend of such authors as Greenwood, Hercowitz and Huffman (1988), Kydland and Prescott 

(1988), Burnside, Eichenbaum and Rebelo (1993), Finn (1991), Basu and Kimball (1994), Bils and 

Cho (1994), and Burnside and Eichenbaum (1994). 

 

In order to find out if the new measure was a good candidate to be the source of procyclical 

productivity, the authors analysed the properties of the Solow residual and estimated the degree of 

returns to scale. Usually, variants of Hall’s (1988) invariance test6 applied to annual data are used 

for this purpose. The authors chose to use annual data in conjunction with different specifications of 

production technology. In this way the estimated residuals differed from the traditional Solow residual 

and produced a different conclusion of Hall’s test: the residuals in BER 95 passed this test while the 

common Solow residual did not pass it. Besides, the obtained residuals were much less volatile and 

less correlated with the aggregate output than those used in RBC literature. Therefore, RBC 

measure of technology shocks turned out to be implausible as a driver of the aggregate output. 

 

The measure of aggregate electricity consumption in BER 95 is a quarterly average of a monthly 

index of industrial energy usage, which includes manufacturing, mining, and utility industries. This 

index is provided in the Federal Reserve Statistical Release and is measured in kilowatts of 

electricity. Three sources of data are used to construct this index: measures of physical product, 

kilowatt-hours of electricity and production worker hours. 

 

The specifications of technology that authors used in their study are the following: 

 

Yt = min (Mt, Vt)                     (6) 

 
6 The invariance of the Solow residual refers to the proposition that under certain conditions, such as competition and constant returns 
to scale, this residual is uncorrelated with the variables that are uncorrelated with the productivity shifts. 
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Where Yt is gross output at time t, Mt are materials at time t, Vt (value added) is a function of worked 

hours (Lt), capital stock (Kt) and electricity usage (Et) (Vt = V(Lt ,Kt ,Et )). The relation between capital 

services and electricity usage is by way of Leontief technology (weak or no substitutability between 

factors). The same fixed-coefficients relationship is also imposed between Mt and Vt. 

 

The data frequency is quarterly and annual. No assumptions are made about goods and factor 

markets. 

 

In this setting the value added produced in one hour by each worker is equal to: At F (1, Kt/Nt) 

F (·) is a concave twice differentiable homogeneous function of degree one. Nt is the number of 

workers at time t, At is the state of technology (and other exogenous factors that affect productivity) 

at time t. 

 

If Nt Ht denotes the total hours which all Nt workers worked in period t, then the total value added 

produced by a certain firm in a given period t will be: 

 

Vt = Nt Ht At F(1, Kt/Nt) = At F(Nt Ht, Kt Ht)          where Ht  is the workweek of a capital good (7) 

 

In order to have a measure of capital services Kt Ht at quarterly frequency BER 95 followed the idea 

of Griliches and Jorgenson (1967) and Costello (1993) who used electricity usage as an indirect 

measure of capital services in their studies. 

 

If industrial electricity usage per machine is proportional to Ht, then Et = φ Ht Kt where Et is total 

electricity consumption. This representation of Et works around the main criticism of using electricity 

as a measure of capital services: the possible non-stationarity of the electricity-capital ratio. If φ is a 

deterministic function of time, the problem does not arise. 

 

Denoting Lt = Nt Ht   will lead to:  Yt = At F (Lt, Et / φ)       (8) 

 

Here all the data are available quarterly. 

 

This setting has just one drawback: it assumes that the elasticity of Et with respect to Kt is equal to 

unity, which in reality may not be so due to different reasons, one of which is the overhead capital. 

This assumption is relaxed in the generalised version of technology presented further. 
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The authors also adjusted their representation of industrial electricity consumption to the changes in 

the intensity of capital usage (“line speed”, λt), which is by all means a measure of the energy 

efficiency of the machinery, by making Et proportional to them: 

 

 Et = φ λt Ht Kt              (9) 

 

where the product of the first three elements is the effective workweek of the machine. 

 

The value added produced in one hour by each worker is then:   At F (1, λt Kt/Nt).           (10) 

 

Also considering that electricity consumption per machine is proportional to the effective workweek 

of the machine, φ λt Ht , then Et is equal to φ λt Ht Kt and the equation Yt = At F (Lt, Et/φ) will remain 

unchanged. Therefore, the use of the variable electricity consumption to measure capital services 

allows for the changes in line speed. 

 

The electricity use also depends on labour effort (“labour hoarding” or “labour utilisation”). Therefore, 

the workweek Ht should be corrected for the effort per hour. Basu & Kimball (1997) studied the 

concept of labour utilisation closely and deduced that it can partly reflect the variable capital 

utilisation. The reason for this is shift premia (if there are any) which link worked capital hours and 

labour compensation. If electricity consumption is used as a proxy for variable capital utilisation, Bils 

& Cho (1994) found a certain relationship between the former and the worked hours per each worker. 

Shapiro (1996b) proved that the correlation between capital workweek and labour is generally 

positive. Nonetheless, it is impossible to deduce in which measure labour effort is a proxy for labour 

utilisation and in which for capital utilisation. So, for the sake of possibility to compute an econometric 

analysis, a simplification is due. Therefore, the authors (BER 95) do not include the adjustment for 

labour effort in their study. In this way they allow for some distortion of their results which favours 

the rejection of the null hypothesis of constant returns to scale. 

 

 

1. In order to get to the second specification, the authors first consider a generalised version of 

technology: 

 

Yt = min (Mt, Vt
*)                    (11) 

 

Where Vt
*= At F(Lt, Kt

*) and Kt
* is a constant elasticity of substitution function of capital and electricity 

use:  
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Kt
*=[μ(HtKt)

ρ + (1-μ) Et
ρ]1/ρ        ρ<1                 (12) 

 

The Leontief relationship between capital services and Et is relaxed but the no-substitutability is 

maintained between Mt and Vt. The data frequency is quarterly and annual.  

 

No assumptions are made about goods market. Factor markets (hours worked and electricity) are 

assumed to be perfectly competitive. 

 

For a price-taking firm in both electric and labour markets, the optimality condition for the firm's 

demand for electricity requires the equality between the MRS between Nt and Et and the relative 

prices, Wt Ht/ PEt with Wt being the real wage rate per worked hour at time t: 

 

𝐴𝑡 𝐹2(𝐿𝑡,𝐾𝑡
∗)(1−µ)(𝐾𝑡

∗𝐸𝑡)1−𝜌

𝐹1(𝐿𝑡,𝐾𝑡
∗)

 = 
𝑃𝐸𝑡

𝑊𝑡
                                (13) 

 

where 𝐹𝑖 denotes the partial derivative with respect to the ith argument of F. 

 

The authors assume that the production function is weakly separable between labour and the other 

factors and that the function F (·) is Cobb-Douglas. Thus: 

 

Yt
*= At (Lt)

α
1 (Kt

*)α
2                         (14) 

 

However, at the beginning the production function is not set to be constant returns to scale (α1 + α2 

≠ 1). It is the hypothesis that the authors test. 

 

Given the last two equations, the gross output can be represented by a geometric average of total 

hours (Lt), energy consumption (Et), and the price of electricity relative to labour (PEt): 

 

Yt
 =  ( (1 − µ) 

𝛼2

𝛼1
 )𝛼2/𝜌 𝐴𝑡 (𝐿𝑡)𝛼1+𝛼2/𝜌 (𝐸𝑡)𝛼2−𝛼2/𝜌𝑃𝐸𝑡

−𝛼2/𝜌              (15) 

 

After taking the first differences and denoting logarithms with lowercase letters they get: 

 

Δ𝑦𝑡 = 𝛾0 + 𝛾1 Δ𝑙𝑡 + 𝛾2 Δ𝑒𝑡 + 𝛾3 Δ𝑝𝐸𝑡 + 휀𝑡                (16) 

  

Where 𝛾0 + 휀𝑡 is the growth rate of 𝐴𝑡 ; 𝛾1 = 𝛼1 + 𝛼2/𝜌 ; 𝛾2 = 𝛼2 − 𝛼2/𝜌 ; 𝛾3 = −𝛼2/𝜌 
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This basic production structure coincides with the special case in which the elasticity of substitution 

between capital and energy is equal to zero (ρ → - ∞) (the first specification). 

 

According to the second specification the equation becomes: 

 

Δ𝑦𝑡 = 𝛾0 + 𝛼1 Δ𝑙𝑡 + 𝛼2 Δ𝑒𝑡 + 휀𝑡                 (17) 

 

 

2. The third specification relaxes the Leontief relationship between Mt and Vt. So, Yt becomes a 

differentiable function: 

 

Yt = F (St, Lt, Et, Mt)                    (18) 

 

The data frequency is annual.  

 

The first-order log-liner approximation of this technology yields: 

 

Δ𝑦𝑡 = η Δ𝑥𝑡 + 휀𝑡                   (19) 

 

Where η denotes overall returns to scale, and Δ𝑥𝑡 is a cost-weighted measure of the growth rate of 

aggregate inputs. 

 

Δ𝑥𝑡 = 𝑐𝑆𝑡Δ𝑠𝑡 + 𝑐𝐿𝑡 Δ𝑙𝑡 + 𝑐𝑀𝑡 Δ𝑚𝑡 + 𝑐𝐸𝑡Δ𝐸𝑡                (20) 

 

Here lowercase symbols denote logarithms of upper-case symbols and 𝑐𝑗𝑡 denotes the share of 

factor j in the total cost, at time t. 

 

So, the only technology specification in which the energy input cannot be completely substituted as 

in Roma and Pirino (2009), is the first one. However, it relies on fixed-coefficients relationship, 

without considering any possible entropy. 

 

Nevertheless, the inference results about returns to scale on all three specifications are the same: 

the hypothesis of constant returns to scale is not rejected. 

 

In addition, by following Hall (1988), who did not estimate a production function due to the 

abovementioned “capital insignificance” puzzle, the authors explore the returns to scale by studying 
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the dependence of changes in output on a cost-weighted sum of growth rates of inputs. By using the 

new measure of capital services, the result is the same as before, the hypothesis of constant returns 

to scale is not rejected. 

 

Besides, the authors present evidence that if a measure of capital services refers to capital goods 

which do not use electricity, overhead labour, overhead capital, and multiple production shifts, the 

procyclicality of capital services is underestimated. Consequently, the inference regarding the 

cyclical movements in labour productivity and the degree of returns to scale is inaccurate. 

 

So, the main conclusions that BER 95 make are the following: 

 

1) the empirical results of the tests on manufacturing industry data support the idea of constant 

(or at least small increasing) returns to scale (the coefficients on labour and capital services 

that were obtained by the authors are in line with labour and capital shares in the US national 

income);  

2) the RBC idea that changes in output depend only on aggregate technology shocks is not 

sustained empirically;  

3) the cyclicality of electricity-based capital utilisation rates drives the changes in labour and 

factor productivity. 

 

Therefore, returning to the first part of this section, by following the same logic it is possible to say 

that stock returns are influenced by energy efficiency and energy input through the output. 

 

This research takes the model with the first specification of technology of BER 95 as the basis and 

modifies the fixed-coefficient energy-production relationship proposed by the authors to let it vary 

throughout the sample period based on available energy intensity measures. This step is necessary 

to make the model reflect the real dynamics of the energy-production interrelation. 

 

2.1.3.  Production function and Entropy 

 

After having proved the theoretical linkage between energy efficiency, energy input and stock 

returns, now the task is to include a measure of CO2 emissions in the abovementioned production 

function.  

 

The necessity to do so is dictated by extended environmental regulations (e.g. the Kyoto Protocol 

(2005-2012) and the subsequent Paris Agreement (since 2016)) which consider the negative 

externalities of the production process (emissions) that are costly for the society and force the firms 



39 
 

to internalise this cost in their production functions. 

 

Taking a step back, it is important to bring out on the surface the problem of entropy which was once 

completely neglected by the Neoclassical economists. According to the Entropy Law (Georgescu-

Roegen, 1971) based on the Second Law of Thermodynamics, the output of any economic process 

is necessarily accompanied by the production of entropy, which can assume the form of heat 

currents and particle currents (waste, greenhouses gasses etc.). Any kind of use/consumption of an 

input during the production process produces entropy as a negative externality and it does so at the 

moment of consumption. Naturally, according to the laws of Thermodynamics, the bigger is the 

entropy product, the smaller is the quantity of produced useful output, given the same quantity of 

energy injected in the production process. Then, this phenomenon should be accounted for during 

the economic modelling. Nonetheless, production functions rarely include waste mostly because it 

complicates the whole setting and makes the econometric estimation of the equation problematic.  

 

The first attempt to present a production function that included waste as the product of entropy was 

made by Georgescu-Roegen (1971). According to the author’s critical thought the representation of 

the true-to-life production process by means of the neoclassical production function is nearly 

impossible because of the non-homogeneity of production with respect to time. The classical model 

assumes the perfect time homogeneity of the production which ensures the stationarity of the data 

series. However, the inevitable stops of the production activity take place in real life. Therefore, the 

correct estimation of the production function is almost impossible unless some assumptions are 

made, and precisely, the assumption of the perfectly efficient just-in-time production process 

homogeneous with respect to time. And even in this case the neoclassical model is not sufficient to 

correctly reflect the production process because it does not consider the side-product of the natural 

resources and their derivatives which are irreversibly degraded when put to use in economic activity. 

Since energy enters any production process and cannot be substituted, waste is necessarily created 

whatever inputs are handled. Moreover, the produced waste has a form of a flow proportional to 

time. 

 

Then, Georgescu-Roegen’s flows-funds point homogeneous production function of degree one, 

already a simplification with respect to a more general functional model illustrated by the author in 

his book, looks like follows: 

 

qt = Φ(rt, it, mt, wt; Lt, Kt, St, ζt, Ht; t)                (21) 

 

Here the lowercase letters refer to flow elements (q = the output products; r = natural resources; i = 

materials coming from other production processes; m = maintenance goods and substances; w = 
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waste), the uppercase letters refer to fund elements (L = Ricardian land, K = capital, H = labour 

power, ζ = process-fund containing goods at various stages of production process, S = the reserve 

of final products to meet the eventual excess of demand).  

 

The element “t” (time) is added to make the Φ function homogeneous and of degree one with respect 

to all the elements considered in the production function. Another way of presenting the same model 

in a more readable manner is without the time element. Then the function F is just an ordinary point 

function: 

 

q = F(r, i, m, w; L, K, S, ζ, H)                  (22) 

 

The author also illustrates the elements in which the equation above can be decomposed: 

 

q = f(L, K, H) ≤ q*                     (23) 

 

where q* is the product flow of the factory working at maximum capacity  

 

the reserve fund of finished products S = S(L, K, H),               (24) 

 

the process fund of semi-finished products ζ = C(L, K, H)              (25) 

 

The maintenance products flow: m = m(K, H)                (26) 

    

but also w1 = m                    (27) 

 

where w1 is wear-and-tear waste. 

 

The equations involving capital K justify the fact that the intensity of capital usage is dependent on 

the quantity of the human labour employed. 

 

Equation (27) owes its existence to the Conservation Law of matter and energy that also says that 

there should be another relation involving only the transformation waste w2: 

 

w2 = w2 (L, K, H)                   (28) 
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it is so because the amount of transformation waste depends on the technical efficiency of the 

production facility which is the result of the interaction of all three basic funds. 

 

q = g[r, i, w2 (L, K, H)]                   (29) 

 

Therefore, the author claims that in order to have the true and complete picture of the production 

process in a factory one needs not just one function (22) but seven basic functions (23) – (29), and 

waste w2 will be an unavoidable consequence of the production process. 

 

Notwithstanding the deep analysis behind the model presented above, the division of the production 

process in seven functions makes the empirical analysis extremely complicated and practically 

unattainable. The estimation requires a merger in a unique production function. 

 

One well-elaborated attempt was computed by Kümmel (2016) who adjusted a capital-labour-

energy-creativity model KLEC (Kümmel, Lindenberger, Weiser, 2015). In this model human creativity 

supports production factors while they operate and interact with each other and, in this setting, 

reveals efficiency changes made to cope with the entropy and to mitigate the emissions. This 

extension is justified by the fact that entropy production is closely connected to energy conversion 

which was proved by the author to be one of the main drivers of economic growth. The output 

elasticities resulting from KLEC model are much higher for energy than for labour (Kümmel, 2011; 

Kümmel, Lindenberger, 2014).  

 

Kümmel constructs pollution functions in the following way: he first proofs Georgescu-Roegen’s 

entropy law based on the entropy balance equation and the entropy production density as far as 

heat and particle current densities and their driving forces are concerned. Then, pollution functions 

are shaped to design the response of the society to scenarios when emissions reach critical levels. 

In these situations, some shares of production factors capital, labour and energy must be devoted 

to emission mitigation. Whereas these parts of production inputs could be employed to produce 

goods and services if it was not for the mitigation of emissions, the traditional neoclassic (called 

“conventional” by Kümmel) economy output is reduced.  

 

The author starts with a base model: 

 

Y (K, L, E; t) = Y0 (t) exp [ F (K, L, E)t ]                 (30) 

 

where Y0 (t) is the production function at time t0, K is capital, L is labour, E is energy. If no efficiency 

changes occur in the time span (t – t0), the production function remains Y0. 
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Further the author specifies two special forms of (30) - YCDE and YL1. 

 

YCDE (K, L, E; t) = Y0 (t) (
𝐾

𝐾0
)α

0 (
𝐿

𝐿0
)β

0 (
𝐸

𝐸0
))1-α

0
-β

0                           (31) 

 

Is the energy-dependent Cobb-Douglas function (CDE) with the following output elasticities: 

 

α = a (
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𝐿
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𝐿
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𝐸

𝐸0

 

 

where α is the output elasticity of capital, β is the output elasticity of labour, γ is the output elasticity 

of energy, a and c are technology parameters: a is a capital efficiency measure; c measures energy 

demand when capital stock is fully utilised. 

 

YL1 (K, L, E; t) = Y0 (t) 
𝐸

𝐸0
 exp [a (2 - 

𝐿

𝐿0
+ 

𝐸

𝐸0
𝐾

𝐾0

) + ac ( 

𝐿

𝐿0
𝐸

𝐸0

 – 1)]                          (32) 

 

The final model is of LinEx form, so all members depend linearly on energy and exponentially on 

factor quotients. Here the output elasticities are affected jointly by pollution functions. The author 

illustrates this interaction in a “polluted” growth equation. The technology parameters become time-

dependent when human creativity is in action. So, in the growth equation the output elasticities of 

capital, labour and energy inputs are multiplied by the product of pollution functions and technology 

parameters. In this manner it is clear which is the society’s reaction to pollution critical limits in terms 

of emissions abatement. 

 

The second method of estimating the impact of emissions mitigation on economic growth proposed 

by the author is by subtracting the monetary values of goods and services, that could be produced 

by the shares of production factors dedicated to emissions reduction, from the total production 

output. 
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So, the first method produces the final result in units of production, whereas the second method 

operates in monetary values. 

 

Therefore, Kümmel considers both possible ways of how pollution could enter the production function 

and affect the production output: in the first instance, by producing the cumulative impact on the 

output elasticities of production factors, hence, on the right-hand side of the production function; and 

in the second instance, by taking into account the dual output, the desired and the undesired one, in 

monetary terms on the left-hand side of the production function. 

 

Despite Kümmel’s model being very detailed and functional, it requires large up-to-date datasets on 

total output, capital, labour, and energy as well as deep knowledge of emissions reducing 

technologies. Therefore, the econometric analysis is difficult to carry out if no simplifications are 

applied. 

 

One way to arrive to a manageable equation is to consider only the right-hand side of the production 

function and to start with a simple Cobb-Douglas production function as in Shadbegian & Gray 

(2005). In this paper the authors include pollution abatement expenditures in the production function 

separately from the production factors: 

 

Y = f(X, O)                    (33) 

 

Where Y is the output; X is a vector of inputs that includes labour, capital and materials which contain 

energy; O is a vector of other factors which influence the output, such as the operating costs of 

pollution reduction (e.g. the worked hours of the special workers who monitor the pollution reduction 

equipment) or macroeconomic shocks.  

 

In particular, the authors also present an additional formula: 

 

Y = f(XP, XA, O)                   (34) 

 

Where XP is a vector of productive inputs; XA is a vector of emissions abatement inputs (special 

pollution reduction equipment, etc.). The authors argue that the division of inputs in two groups is 
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necessary to avoid the productivity7 “mismeasurement”. If all the quantities of the inputs are taken 

as productive, then the real productivity of factors is understated since the emissions abatement 

inputs do not produce any measured (desired) output and could influence the overall productivity, if 

ever, only through the negative impact on the productivity of other inputs. 

 

The two types of OLS regressions that the authors perform present the following division: the first 

type studies the impact of inputs (capital, labour, materials) – productive and pollution abatement 

versions included separately – on the overall productivity of the plants (US paper, oil, steel sectors), 

while the second type considers only the productive version of the inputs and the overall pollution 

abatement operating costs variable. The resulting coefficient of determination is the same for both 

types of regressions relative to each industrial sector meaning that the pollution reduction operating 

costs variable includes the impact of all emissions reduction inputs for that sector. The regression 

output shows that this overall variable has a negative coefficient in all the regressions, whereas the 

pollution abatement materials variable (includes energy) is negative in paper and steel sectors 

regressions and positive in oil sector regression, the pollution abatement capital is negative in oil 

and paper sectors regressions and positive in paper sector regression, the pollution abatement 

labour is negative in oil sector regression and positive in paper and steel sectors regressions. 

 

However, if we consider only the working capital (measured by the energy input), according to the 

previously mentioned simplifications, the division between productive and emissive parts of the input 

is complex to obtain and is not the task of this study. For simplicity this study assumes that the entire 

quantity of consumed energy produces both the desired output and CO2 emissions. Therefore, only 

the first version of the formula by Shadbegian & Gray is applicable to the present analysis. 

 

Y = f(XE, O)                    (35) 

 

Where XE (or simply E) is the whole energy input, and O is the product of the unitary cost of emissions 

reduction imposed by environmental regulation (and determined on the special emissions permits 

market) and the quantity of CO2 produced by the energy which was used in the production process. 

This cost is comparable to Shadbegian & Gray’s operating cost of reducing pollution and, 

consequently, should have the same impact on the productivity of the firm.  

 

Apart from the pollution abatement operating costs, Shadbegian & Gray also introduce a CIPP 

(“change-in-production-process”) variable which indicates if a certain plant invested in new more 

efficient equipment or adopted new production techniques compared with the median share of other 

 
7 The productivity is calculated as the ratio of the output to inputs. 
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plants of the same industrial sector. This variable is used by the authors both as a single dummy 

and in interaction with the pollution abatement capital and pollution abatement operating costs.  

 

The logics suggests that CIPP or its approximations could also be used in the present study: the 

inverse of the ratio of the energy consumption over the value added at the exchange rate (euro 2015) 

and the intensity of the consumed energy per ton of output – reflect the interaction with the energy 

input. The inverse of the energy intensity in terms of value added represents the increase in the 

value added of the production due to the consumed energy. The inverse of the intensity of CO2 

emissions per ton of output multiplied by the intensity of the consumed energy per ton of output and 

by the abovementioned ratio of the value added over the energy consumption – show the interaction 

with the CO2 emissions reduction operating costs represented by the decreased value added of the 

production due to the application of the proportional carbon tax. 

 

So, unless there is multicollinearity between energy efficiency measures, all the intensities have the 

right to enter the production function which considers the value added of the production and not 

simply the produced quantity. 

 

Therefore, multicollinearity permitting, the estimation would consider the regression of the following 

log-linear Cobb-Douglas production function: 

 

Y = β0 + β1EC + β2EnInt + β3UConsE + β4CO2 + ε               (36) 

 

Where EC is the electricity consumption input, EnInt is the inverse of the Energy intensity of the 

relative industrial sector over the value added of the production, UConsE is the Intensity of Electricity 

Consumption of the relative industrial sector per ton of production, CO2 is the inverse of the Intensity 

of CO2 emissions of the relative industrial sector per ton of production. 

 

As far as the impact on the output is concerned, one may expect the positive influence of the energy 

input and the energy efficiency measure taken together, and at the same time one should expect a 

negative impact of the operating costs of the reduction of CO2 emissions. In fact, Shadbegian & Gray 

predict and then obtain a negative regression coefficient on the pollution abatement expenditures 

variable. 

 

To see how a similar production function impacts the market return of a firm, first let’s take a closer 

look at the formula Y = f(E; O). On the one hand there is the productive energy input that increases 

the output, and this impact needs to be maximised, and on the other hand there are operating costs 

linked to the use of energy input with reference to the production of emissions, and the impact of 



46 
 

those on the output is negative, therefore, they need to be minimised. Given the complexity of 

impacts inside the production function, one should proceed to the analysis by steps. 

 

On the other hand, if from the beginning the aim is to follow Kummel’s second approach, that is to 

find a plausible solution to a production function with two separate outputs (the conventional output 

and emissions), the way to do so could be to elaborate two linear equations relative to two processes 

which take place simultaneously, convert the outputs in monetary values and then perform the 

subtraction. 

 

For this purpose, it is possible to use a system of equations by Santetti, Marquetti, Morrone (2018) 

who explicitly stated the existence of desired and undesired products of any capital-labour-energy 

production process and presented two Leontief production functions: the first being a standard 

capital-labour-energy production function and the second being a pollution function involving the 

same inputs of the first function:  

 

Y = min (ρK, xN, eE)                  (37) 

P = min (aK, bN, cE)                  (38) 

 

Where Y is the desired output or GDP in 1995 reais, P is waste (CO2 emissions in tons), K is net 

capital stock of fixed assets in 1995 reais, N is labour (number of workers), E is energy supply (TOE, 

tons of oil equivalent). In the equations (37) and (38) the coefficients differ to distinguish the relative 

elasticities of the output (desired or undesired) on each of the inputs. The units of measure are the 

following: x=Y/N in 1995 reais per worker; ρ=Y/K is a number; e=Y/E in 1995 reais per TOE. a=P/K 

in tons of CO2 per 1995 reais; b=P/N in tons of CO2 per worker; c=P/E in tons of CO2 per TOE. 

o=Y/P in 1995 reais per ton of CO2. The parameters (x, ρ, e) are referred to as technical variables, 

while (a, b, c) are emissions-intensity measures. Both groups of parameters together define the 

production technique of a certain production process at a given point in time. 

 

In that article Santetti, Marquetti and Morrone elaborated on the existing the theory of production 

with greenhouse gas emissions by Foley, Michl (1st edition 1999) & Tavani (2nd edition 2019). The 

scheme that the latter authors used for the representation of the production process based on 

burning fossil-fuels is the following:  

 

 

Source: Foley, Michl, Tavani (2019), p. 354. 
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Where kFF is fossil-fuel technology capital intensity, δ + D(CD) is the capital depreciation rate which 

includes the depreciation rate per unit of capital δ and the damage function D(CD) representing the 

capital loss due to the climate change when the atmospheric concentration of CO2 is CD. Here the 

authors assume that there is no scarcity of the reserves of fossil fuels8 and that the climate damage 

manifests itself in the destruction of means of production, and, hence, in the increase of the capital 

depreciation rate. For the sake of simplicity, the authors assumed that to produce X units of output 

X units of CO2 need to be emitted. So, the unit of measurement for CO2 is the amount of CO2 

emitted while producing one unit of output. 

 

At the end of the period the (fossil-fuel) production technique of a productive process gives birth to 

three results:  

 

1) X units of new output; 

2) the capital depreciated by the factor (1 – δ – D(CD)); 

3) X units of CO2 emissions. 

 

This scheme is representative of the production process at any given moment. However, if one 

should represent the production process which lasts in time, then the depreciated capital should not 

be considered as one of the outputs because it enters the production process as the input in the 

following moment. Therefore, only the production output and the emissions remain as the result of 

the production process. 

 

Next, a simplified model along the lines of Santetti, Marquetti, Morrone (2018) will be presented in 

order to link conceptually energy inputs and CO2 emissions to stock market returns, which is the 

task of this work. 

 

2.1.4.  Production-based model with CO2 emissions. 

 

Inspired by the idea by Kümmel that energy is the driving force of economic growth, to model the 

production process of industrial sectors I consider a simplified version of Santetti, Marquetti, Morrone 

(2018), without taking into consideration the labour power, thus assuming no scarcity of this input. 

Then the model for the desired output will look like follows: 

 

Y = min (ρK, eE)                   (39) 

 
8 Otherwise, it would be possible to burn all the reserves of fossil fuels on Earth causing a climate catastrophe. 
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Where symbols and coefficients are as in Santetti, Marquetti, Morrone. Therefore, the coefficient e 

is regarded as the inverse of energy intensity (or “the productivity of energy” as the authors put it), 

the state of linear technology or the energy efficiency. Following Kümmel, it is logical to think that 

this coefficient increases as time passes due to the technology improvement, so it can be 

represented as e(t). Also, by making another simplification and regarding capital as an input which 

is not subject to scarcity, the production function will become: 

 

Y(t) = e(t) E(t)                               (40) 

 

Where e(t) is naturally the energy efficiency (the inverse of energy intensity) and is calculated as 

𝑌(𝑡)

𝐸(𝑡)
 

 

The evidence of the direct relationship between the production output and the energy input is given 

by the comparison of the trend of the Italian production index (IPI) with that of the IMCEI (Indice 

mensile dei Consumi Elettrici Industriali), the industrial electricity consumption index elaborated 

monthly by Terna. The correlation between the two series is particularly high (ranging from 0,90 - 

base year 2010, to 0,95 - base year 2015). The figures below provide the visual analysis relative to 

the sample January 2011 – December 2017 with the base year 2010 (average 2010=100) and for 

the sample January 2016 – May 2020 with the base year 2015 (average 2015=100).  

 

Figure 5 The trend comparison of IMCEI, the monthly industrial electricity consumption index, and IPI, the 

monthly Italian production index. Trend variation with respect to the average of the base year (2010=100). The orange 

line refers to the IPI index, the blue line refers to the IMCEI index. Sample period January 2011 – December 2017. 
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Figure 6 The trend comparison of IMCEI, the monthly industrial electricity consumption index, and IPI, the 

monthly Italian production index. Trend variation with respect to the average of the base year (2015=100). The orange 

line refers to the IPI index, the blue line refers to the IMCEI index. Sample period January 2016 – May 2020. Monthly data. 

 

The figures above empirically prove the existence of the direct relationship between the production 

output and the energy input as hypothesised theoretically by equation (40). As it is put on display by 

Figure 6, the indices sometimes perfectly overlap due to almost perfect positive correlation between 

the series. 

 

Appendix A provides a comparative analysis of some of the components of IMCEI, the electricity 

consumption series relative to four energy intensive industrial sectors (Steel, Non-ferrous Metals, 

Cement and Chemicals), with the IPI index for both base years. The results confirm the trend shown 

in Figure 5 and Figure 6, mainly that the industrial electricity consumption tracks the industrial 

production over time. 

 

As for the pollution (CO2) production function, one can make the same simplifications and start with 

a model including only capital and energy: 

 

P = min (aK, cE)                    (41) 

 

Where the coefficient c is the CO2 emissions intensity (CO2 emissions per unit of energy input  
𝑃(𝑡)

𝐸(𝑡)
) 

which is time-variable (c = c(t)) by Kümmel’s idea.  

 

And the simplification without capital:   
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P(t) = c(t) E(t)                    (42) 

 

Moreover, the coefficients e(t) and c(t) are negatively correlated: the higher is the energy efficiency 

of the production process, the lower are the CO2 emissions per unit of used energy. On the other 

hand, energy intensity 1/e(t) and c(t) should be positively correlated. This idea is empirically checked 

in Table 20 later in the Methodology section. Because production is directly proportional to energy 

used, we also have that the higher is the energy efficiency, the lower are the CO2 emissions per unit 

of output (δ(t)), meaning that δ(t) is a decreasing function of e(t). Then the CO2 emissions per unit 

of production is also negatively correlated with the energy efficiency measure. Under the special 

case when δ(t) = 
µ

𝑒(𝑡)
 where µ > 0 is a constant, the product δ(t) e(t) is a constant, µ, and the 

logarithm of δ(t) is perfectly (negatively) correlated over time with the logarithm of e(t). 

 

As far as Y(t) and P(t) are produced simultaneously with the same energy input but different 

negatively correlated coefficients, two models working simultaneously need to be analysed. 

 

Let’s take an energy intensive production, for example, a steel company with the usual production 

function Y = max(K, N, E) and no constraint on labour and capital as before. It produces one good x 

and operates in two periods of time t0 and t1 with linear technology. The usual problem (foc) that the 

firm needs to solve is then as follows: 

𝑚𝑎𝑥 𝐸𝑡[𝑥𝑡 +  𝑃𝑥𝑥𝑡+1]      (43) 

      s.t.     𝑥𝑡 = 𝑒𝑡 (Ψ – ε) 

                𝑥t+1= 𝑒ǁt+1 ε 

 

Where 𝑥𝑡 is the product at time t, 𝑥t+1is the product at time (t+1), 𝑒𝑡 is the energy efficiency 

(production per unit of consumed energy) at time t, 𝑒ǁt+1 is the energy efficiency at time (t+1), 𝑃𝑥 is 

the price at t of one unit of product that will be available at (t+1), Ψ is the total quantity of energy at 

t, ε  is the part of energy whose consumption is postponed to (t+1), t is the numeraire. 

 

The maximization problem can also be rewritten in terms of R, the cost of capital needed to discount 

the future production. As far as R = 
1

𝑃𝑥
 , then: 

𝑚𝑎𝑥 𝑥𝑡 + 
𝐸𝑡 [𝑥𝑡+1]

𝑅 ⬚
     (44) 

    s.t.     𝑥𝑡 = 𝑒𝑡 (Ψ – ε) 

             𝑥t+1= 𝑒ǁt+1 ε 
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After solving the problem above, we get: R = 
𝐸𝑡[ 𝑒ǁt+1]

𝑒𝑡
 

 

Recalling the formula for the pricing kernel for the consumption-based asset pricing (m = β 
𝑢′(𝐶𝑡1)

𝑢′(𝐶𝑡0)
) 

which linked m to the marginal rates of substitution, an analogous formula for the production-based 

setting which ties the pricing kernel (the discount factor) to the marginal rates of transformation would 

result in: 

 

m = 
 𝑒ǁt+1

𝑒𝑡
  given linear and deterministic technology. 

 

Here the firm may postpone the consumption of a part of the available energy without facing any 

cost. In reality it is not quite so, as securing energy availability in a future period, either by way of 

storage or securing delivery of newly produced energy through the forward market, is costly. 

Therefore, a price of shifting the energy to the next period (𝑃 ) needs to be introduced. This cost is 

not fixed, it depends on the quantity of energy that needs to be stored/acquired to be consumed in 

the future. If storage of unused energy ε is implemented at the level of the individual firm, the cost 

will be a function 𝑃 (휀). Under the assumption of some economy of scale in the storage of energy, 

𝑃 (휀) could be a convex decreasing function in ε9. However, more realistically, 𝑃  is set outside the 

firm’s control in the energy production system through the presence of aggregate storage facilities, 

and the structure of the energy production industry which determines a price for future delivery. 

 

𝑚𝑎𝑥 𝑥𝑡 + 
𝐸𝑡 [𝑥𝑡+1]

𝑅 ⬚
     (45) 

    s.t.     𝑥𝑡 = 𝑒𝑡 (Ψ – 𝑃  ε) 

             𝑥t+1= 𝑒ǁt+1 ε 

 

The cost of capital is then equal to Rx = 
1

𝑃𝜀
 
𝐸𝑡[ 𝑒ǁt+1]

𝑒𝑡
 where 𝑅 = 

1

𝑃𝜀
 may be defined as the return on 

the shift of energy to the future. It can be obtained on the Forward Electricity Market (MTE). However, 

the value is in nominal terms, so 𝑅  should be adjusted for inflation (I). Then the cost of capital 

formula will become as follows: 

 

 
9 In this case the first order condition would involve the derivative with respect to ε of the product 𝑃 (휀) ε. 
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𝑅𝑚 = 𝑅 (1 + 𝐼)
𝐸𝑡[ 𝑒ǁ𝑡+1]

𝑒𝑡
                (46) 

 

where 𝑅𝑚 is the return on the energy market. The formula shows that 𝑅𝑚 is directly influenced by 

the change in energy efficiency of the firms operating on the energy market (
𝐸𝑡[ 𝑒ǁt+1]

𝑒𝑡
). So, according 

to this simplified model (no labour costs, no depreciation of capital since there is only the working 

capital, no other production costs) the firm maximises its production by considering only the real 

return on the energy (electricity) market, which includes the forward energy price and inflation, and 

the technical progress of the relative industrial sector expressed by the energy efficiency measures. 

And since production is closely related to stock prices, then these variables will be used further in 

the equation explaining sector stock returns. 

 

As in this simple model, where production is only based on the energy input and the intensity of CO2 

emissions is negatively correlated with the energy efficiency, there will be a physical incentive in the 

economy to improve energy efficiency over time as this improves output given the energy input, and 

as consequence there will be a decrease of CO2 emissions. This dynamic element is not explicitly 

present in the theoretical model. If other inputs were considered, there could also be a possible 

negative effect on the CO2 emissions from the overall productivity of the firm through the negative 

impact on the productivity of other inputs (e.g. global warming affecting the productivity of the labour 

force and the productivity of fixed capital by leading to a faster wear of the machinery). The present 

simplified version of the production function does not account for these issues. However, the CO2 

coefficient δ(t) will provide useful information on technology and productivity. 

 

2.1.5. Pollution as a cost for the firm. 

 

The regulatory framework for polluting industries of the Euro zone imposes a cost on polluting firm 

proportional to the CO2 emissions, the so-called carbon tax. Some European countries, for example 

Sweden, achieved a significant reduction of CO2 emissions thanks to the carbon tax introduced in 

the 90s. Other countries like Italy have never made the application of the carbon tax effective until 

now but have relied on the market for greenhouse emissions permits ETS (EU Emissions Trading 

System). The reason for the existence of carbon permits’ trading lies in the fact that each polluting 

firm is given a certain number of free carbon permits that correspond to the level of emissions 

considered desirable for this firm on the basis of a series of criteria (industrial sector, size, the risk 

of relocation in zones with less environmental pressure etc.). At the end of each year these permits 

need to be given away in the adequate quantity to cover all the CO2 emissions of that year. If the 

permits are more than needed, they can be kept by the firm for the future use or traded at ETS. If 
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the permits are less than needed, they can be acquired at ETS. 

 

If 𝑃𝑏 is the price for future emissions at time t: it is the price of greenhouse emissions permits that 

are traded at ETS. These “carbon permits” can be kept by the firm to cover its future emissions, 

therefore, 𝑃𝑏 is the price that the firm pays today to cover its emissions that will be generated by the 

future energy consumption.   

 

So, the firm is not only interested in maximising the production of product x but also in minimising its 

greenhouse emissions which are costly for the firm due to the more and more stringent 

environmental regulation. 

 

In the short term the firm will not be able to alter the available production technology towards 

increased energy efficiency, so there is limited scope for minimising emissions. Still the cost can be 

considered in the firm’s objective function.  

 

A way to take this cost into account is to construct a pollution production function and solve the 

minimisation problem, and then derive the net return on the use of the working capital using the 

result of that minimisation. Yet another way is to imagine it related to the amount of production output 

through a function τ(δt)10. Both methods show that, apart from the forward energy price and inflation, 

the intensity of CO2 emissions is relevant for the firm’s productivity. Therefore, the intensity of CO2 

 
10 Together with the production of product x a certain quantity of CO2 (b) is emitted in the atmosphere. Then, an additional problem arises 

due to the pollution production function B = min (K, N, E) with no constraint on labour and capital as before: 

min 𝐸t[𝑏t + 𝑃𝑏𝑏෨t+1]     (47) 

      s.t.     𝑏𝑡 = 𝛿𝑡 (Ψ – 𝑃  ε) 

                𝑏෨t+1 = 𝛿ሚt+1 ε 

 
where δ is the intensity of the emissions of CO2 for one unit of energy and 𝑃𝑏 is the price for future emissions at time t. The solution gives: 

the cost of emissions Rb = 
1

𝑃𝜀
 
𝐸𝑡[ 𝛿෩t+1]

𝛿𝑡
 where 𝑅 = 

1

𝑃𝜀
 is the return on the shift of energy to the future. After the adjustment for inflation: 𝑅𝑐 

= 𝑅𝑒(1 + 𝐼)
𝐸𝑡[ 𝛿෩t+1]

𝛿𝑡
   where 𝑅𝑐 is the cost of greenhouse emissions due to electricity usage which increases if the intensity of CO2 

emissions for one unit of energy (
𝐸𝑡[ 𝛿෩t+1]

𝛿𝑡
) increases. Then, the net return on the use of the working capital RN can be obtained by 

subtracting 𝑅𝑐 from the overall gross return Rm on the energy market. 

Another way to face the problem of the CO2 emissions cost is to link it directly to the production output through a function  (1 −  𝜏൫𝛿𝑡൯) 
that decreases the value of the firm:  

 

max 𝐸t[𝑥t(1 −  𝜏(𝛿𝑡)) + 𝑃𝑥𝑥t+1(1 – τ(𝛿𝑡+1))      (48) 

s.t.     𝑥𝑡 = 𝑒𝑡 (Ψ – 𝑃  ε) 

                                                                   𝑥t+1= 𝑒ǁt+1 ε 

 

The solution will give: 𝑅𝑚 = 𝑅 (1 + 𝐼)
(1 – τ൫𝛿𝑡+1൯)

(1− 𝜏൫𝛿𝑡൯)

𝐸𝑡[ 𝑒ǁt+1]

𝑒𝑡
      

 (49) 
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emissions should be included in the equation defining stock returns. 

 

Summing up the results obtained hereabove and considering the theoretical model of simultaneous 

production of desirable and undesirable output according to equations (40) and (42) and, in 

particular, the linkage between this dual output and the overall firm’s productivity impacting the 

relative stock price, it is reasonable to include in the stock returns equation under estimation the 

following variables: the electric energy consumption, energy efficiency measures and the intensity 

of greenhouse gasses emissions, the forward price of electric energy, the price of carbon permits 

and the inflation index. As far as the price change of carbon permits is concerned, it is added to the 

model to act like a control variable. It is not essential in the elaborated economic model which is 

based on the firm’s incentive to improve its energy efficiency for productivity reasons, regardless of 

the legislation that penalises greenhouse emissions. However, it was included among other 

regressors to double check the inference results. As for the inflation index, it conveys little information 

if included in the regression as one of the predictors. The only conclusion which can be made is the 

one deducted from how fast stock prices usually react to the changes in inflation during a certain 

period. It is well known that the correction for inflation of stock returns occurs rather slowly if inflation 

grows according to the expectations. Therefore, I get rid of inflation by subtracting it from the stock 

returns and obtain the real rate of stock return not subject to inflation fluctuations. The formula which 

is usually used for this purpose is Real Rate of Return = (1+Stock Return)/(1+Inflation) -1. Then the 

equation to be tested would become: 

 

RRRx = β0 + β1ΔEC + β2EnInt + β3UConsE + β4CO2 + β5ΔPE + β6ΔPCO2 + ε           (50) 

 

Where RRR is the real rate of stock return calculated as specified above. It is expressed as the year-

over-year, or the month-over-month change in stock prices adjusted for inflation. 

 

This model is along the lines of Chen, Roll and Ross (1986) to the extent that the explanatory 

variables which are related to the mechanism generating returns according to the simplified model 

equation (50) are tested. 

 

The explanatory variables considered are the: 

 

ΔEC – the sector electricity consumption, expressed as the year-over-year or the month-over-month 

seasonally adjusted percentage change. 

 

EnInt – the sector value-added energy intensity expressed as the total consumed energy per value 

added to production in 2015 Euro. Monthly temporally disaggregated data from annual data. 
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UConsE – the sector physical energy intensity expressed as the consumed energy per ton of output 

product (only for the Cement sector this variable is the electricity intensity and not the total energy 

intensity as for the other sectors). Monthly temporally disaggregated data from annual data. 

 

CO2 – the sector CO2 emissions intensity expressed as the quantity of emitted CO2 per ton of output 

product (only for the Chemicals sector this variable is not physical but value-added – calculated as 

ratio of CO2 emissions per value added to production in 2015 Euro). Monthly temporally 

disaggregated data from annual data. 

 

ΔPE - the forward price of electric energy, expressed as the year-over-year or the month-over-month 

seasonally adjusted percentage change. 

 

ΔPCO2 - the price of carbon permits, expressed as the year-over-year or the month-over-month 

seasonally adjusted percentage change. 

 

Before moving to the empirical estimation of the equation (50), it is necessary to dwell on some 

reflections regarding the theoretical value of the presented model. 

 

First, it is important to underline the fact that the model shown above is the unique attempt to 

elaborate an easily solvable production function with dual output, the desired and the undesired 

ones, produced by one input (energy). This idea is based on the concept of the negative 

environmental externality which accompanies any production process but is usually analysed 

separately from the impact of other production factors. One difficulty of including this externality in 

the productive economy consists in fact that the units of measure of the output of the negative 

externality differ from the units of measure of the traditional output. Another reason why the 

production function of this dual output form has not been considered before is because generally the 

producer is more interested in the output which generates revenues and tends to ignore the 

undesired output (negative externality) which impoverishes the society by damaging the 

environment. To repair to this disadvantage for the economy the legislator imposed a cost on the 

producer for the greenhouse gasses emissions. In this way the undesired output of the production 

process was transformed in a monetary cost for the producer and, thus, gained the right to enter the 

production function. 

 

The proposed model is undeniably in a simplified form. As in BER 95 the adjustment for labour effort 

(hours worked) was due but was consciously neglected for the sake of simplicity and feasibility of 

econometric analysis. The same was done with for the capital input. Besides, as the environmental 
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externality is linked to time, its effects are measured throughout some time spans. In this work I take 

an instant and model the production function in that instant, considering the momentary production 

of greenhouse gasses. Even if this fact does not reflect exactly the physical reality of the production 

process, this simplification is needed to make the explanation of the process clearer. Georgescu-

Roegen presented a complex and multi-stage dynamics of the production process which included 

waste. However, its transformation in a form useful for the empirical estimation would be troublesome 

if not completely unattainable. Therefore, the simplification was done here, notwithstanding that the 

deeper analysis of the physics of the production process (meaning the reintroduction of the labour 

and capital in the production function and the elaboration of multi-staged dynamics) are left for the 

future research. 

 

Next in order are some considerations on the inner dynamics of the equation (50).  

 

As far as the electricity consumption is concerned, its regression coefficient may vary from one 

industrial sector to another depending on the overall sector energy efficiency. The normal situation 

is when electricity consumption (the month-over-month or the year-over-year variation of it) has a 

positive coefficient: according to equation (46) (and other modifications) R = E(et+1)/et where e is 

energy efficiency, hence, the return is positively related to the increase in energy efficiency, or (the 

energy intensity kept constant) to the decrease in energy input (output kept constant). So, if put in a 

very simple form: the reduction (increase) in the MoM or YoY variation of EC accompanied by the 

increase (decrease) in energy efficiency will lead to higher (lower) productivity and production output, 

higher (lower) stock prices and, thus, lower (higher) stock returns. The abnormal situation may arise 

when the electricity consumption features a negative coefficient: then either the equipment is getting 

obsolete very fast, and even higher use of electricity (lower MoM or YoY change in EC) cannot 

improve the productivity which is getting reduced, leading to lower stock prices and, thus, higher 

stock returns; or the equipment has undergone an improvement and became extremely energy 

efficient, so that lower electricity usage (higher MoM or YoY change in EC) led to higher output, 

higher stock prices and, hence, lower stock returns. Each case should be analysed carefully to 

understand which dynamics takes place.  

 

Another important matter is the statistical significance of the electricity consumption in the regression 

models when the variable is used alone and in combination with energy efficiency measures. The 

withdrawals of electricity which are registered by Terna, take account only of the electricity taken by 

industrial sector from the national grid. It does not consider the energy which the sector may produce 

by itself (renewable sources of energy like photovoltaics). It also ignores the fact that if the 

investments in more efficient equipment are not made, the consumption of electricity would inevitably 

rise without impacting the output. All this information can be deducted from the energy and CO2 



57 
 

emissions intensities. These energy efficiency measures may correct the impact of the electricity 

consumption on the stock return (positive coefficient sign and statistical significance) when sector 

energy efficiency is relatively low, it may amplify it (negative coefficient sign) when the sector energy 

efficiency is particularly high or may be insignificant in the regressions when the electricity 

consumption variable is enough to explain the stock returns and energy efficiency measures do not 

add any other predictor power to the model. So, the functioning of the elaborated simplified model 

should be valued accurately in each specific case considering the actual interaction of electricity 

consumption and the variation of energy efficiency of the industrial sectors under analysis. 

 

Besides, according to already mentioned positive relationship between energy intensity and CO2 

emissions intensity, one should expect the same sign of the regression coefficient for these 

variables. Speaking of the impact that energy efficiency measures produce on stock returns, it is 

plausible to anticipate a positive regression coefficient on the intensity of CO2 emissions and energy 

intensities. This is because the increase of energy efficiency is directly linked to the increase in future 

productivity, and the energy efficiency measures (energy and CO2 emissions intensities per ton or 

1€ of output) are inversely related to the energy efficiency. So, an increase in energy efficiency 

measures means an increase in the quantity of energy used in the production process and an 

increase of CO2 emissions, keeping the output constant. Then, it is obvious that the energy efficiency 

of the plant is reduced in this case; the future production is reduced, and the market investors would 

require an additional risk premium on the relative stock return (Agrawal & Osadchiy, 2022; Hiroki, 

Iwatsubo, Watkins, 2022 and others). In other words, an increase in the energy and CO2 emissions 

intensities will mean a reduction of the energy efficiency of the equipment and will bring to a decrease 

in the productivity and the production output, leading to lower stock prices and, thus, higher stock 

returns (due to the inverse relationship between stock prices and stock returns). However, some 

abnormal situations may be encountered when the industrial sector, for example, is big and 

extremely energy efficient. In that case the increase in energy and CO2 intensities (especially the 

value-added versions of them) may not lead to the reduction in energy efficiency with the subsequent 

reduction of productivity but could mean a temporary situation which would be taken care of rapidly 

by the increase (instead of a reduction) of the scale of highly energy efficient production which would 

then lead to higher prices and, hence, lower stock returns. So, in this case the regression coefficient 

of the energy efficiency measures could be negative. 

 

Needless to say, the multicollinearity between the energy efficiency measures is highly probable to 

arise during the regression analysis. Therefore, the contemporaneous use of all three energy 

efficiency measures in sectorial regressions is troublesome. In the empirical part of this study, I 

carefully choose the best performing energy efficiency measure to be used in the regressions for 

each energy-intensive industrial sector under consideration. 
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The month-over-month (or year-over-year) change in the energy forward price (forward energy 

return) and the month-over-month (or year-over-year) change in the price of carbon permits’ price 

(carbon credits return) also impact the productivity of the industrial sectors (Calligaris et al, 2018) 

and, hence, their stock returns. The normal situation is when an increase in forward energy price 

and/or in carbon permits’ price (the decrease in relative returns) leads to a reduction in output and 

productivity of the firms and, therefore, the decrease in the relative stock price and, hence, an 

increase in the stock return. So, for the variables used in their month-over-month and year-over-year 

form the expected regression coefficient should be negative. An abnormal situation may arise when 

the forward energy price change and/or the carbon permits’ price change are insignificant in the 

regression meaning their zero elasticity with the firm’s productivity. This may happen when the 

industrial sector is capable to improve its energy efficiency rapidly before the impact of the forward 

energy price change (or the carbon permits’ price change) on the productivity becomes visible (for 

example, by taking advantage of the economies of scale) and/or when it can easily transfer the 

increase in production costs to the intermediate and final consumer of the finished product. Then the 

industrial production of that sector would not feel any impact from the increase in the forward energy 

price and/or in the carbon permits’ price. There can be cases when the sign of the regression 

coefficient of the carbon permits’ price change is different from that of the forward energy price 

change. One of these cases is when the industrial sector under consideration is highly sensitive to 

the change in carbon price: then it makes structural changes to its production line, or it reduces its 

energy intensity almost immediately after having learnt the news. Another case may arise when the 

industrial sector is big enough to minimise the impact of the increased cost by upscaling the 

production and/or increasing the prices at which the product is sold to the intermediate/final 

consumers. If the upscaling is larger than needed to minimise the cost, than the impact on stock 

returns of the increase of carbon prices would be reversed. 

 

So, the matter of signs and the magnitude of the coefficients for any predictor depends largely on 

the energy efficiency of the industrial sectors under consideration and the correlation between the 

regressors.  
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The following graph shows the energy efficiency index in Italian industry for the period 2000-2019, 

year 2000 taken as the base. Lower values mean higher energy efficiency. These data should be 

combined with the data on sector energy consumption (see Figure 16). 

Source: Odyssee 
 

Figure 7 Energy Efficiency Index in Italian Industry (2000=100). The energy efficiency of industry measured by 

ODEX index, elaborated by Odyssee Project, based on the data provided by ENEA, National Agency for Energy Efficiency, 
mainly the energy efficiency measures (energy/electricity and CO2 emissions intensities). The decreases in the value of 
ODEX mean the increases of the energy efficiency of the industrial sectors. Sample period 2000-2019. 

 

It is clear from the figure above that the Italian Chemicals sector improved its energy efficiency 

greatly in the recent years. The Steel sector also reports a significant improvement, even if less 

marked compared to the Chemicals sector. But the Construction & Materials sector (Non-Metallic 

Minerals in the graph above) does not show extraordinary results from the point of view of energy 

efficiency. The energy efficiency index almost hasn’t changed for this sector during the past 20 years. 

Therefore, it is reasonable to expect different regression results for these sectors. 

 

The next section explains in detail the procedure of the regression analysis and presents the relative 

results. 
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2.2. Data and Methodology.  
 

2.2.1. Data. 
 

Industrial energy consumption historical data (Gwh) for the period between 2010 and 2020 (January 

2010 – May 2020) were kindly provided by Terna. The data are monthly electric energy supply 

statistics (GWh) referring to four energy-intensive Italian industrial sectors (Cement, limestone, 

plaster; Chemicals; Non-ferrous Metals; Steel). The list of the Italian companies whose electricity 

consumption is considered by Terna, is not available. The raw industrial electricity consumption time-

series provided by Terna are affected by seasonality which could bias the inference results (reduced 

degrees of freedom due to spurious correlations between independent variables). Therefore, 

following the guidelines by Terna, the raw data were first tested for seasonality and then adjusted 

for it by the Demetra+11 software, and thus, only the seasonally adjusted time-series were used in 

all the steps of the research. 

 

The time-series of price indices that constitute the dependent variables in the statistical tests (Italian 

stock returns) were downloaded from the website www.investing.com. The stock market indices 

were associated with the industrial sector electricity consumption provided by Terna in the following 

way:  

Table 14 : Matching of Stock Market Indices to Industrial Electricity Consumption by 

sector 

 

Stock Market Index Sector Electricity Consumption 

 

Ftse Italia All Share Basic Resources 

 

 

Steel 

Non-Ferrous Metals 

 

 

Ftse Italia All Share Construction & Materials 

 

 

Cement, Limestone and Plaster 

 
11 The TRAMO-SEATS procedure is applied by following the example by Terna for the seasonal adjustment of the monthly 

raw data for demand of electricity. This procedure is also recommended by the “EES Guidelines for seasonal adjustment”. 

Its main purpose is to isolate and estimate calendar and temperature effects, and the impact of the seasonal and trend-

cycle components on monthly data. The procedure applied to a time-series consists in two steps: model identification and 

model testing. 

1) the TRAMO procedure determines an appropriate ARIMA model (identified either automatically or set by the user), both 

for the non-seasonal and the seasonal part. 

2)  the SEATS procedure separates the series in trend-cycle component, the seasonal component, and the stochastic part 

by means of the spectral analysis applied to the linearised time series through the application of logarithms. The trend-

cycle component includes the long-term behaviour of the analysed data (trend) and the deviations of the observations from 

the trend (cycle). The seasonal component is calculated subtracting the trend-cycle component from the time-series. The 

peaks of the spectrum are then the seasonal component of the series. The erratic component is white noise. 

The procedure then determines series-specific weighting coefficients and uses them to produce the final seasonally 

adjusted time-series. 

http://www.investing.com/
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Ftse Italia All Share Chemicals 

 

 

Chemicals 

 

Table 15: Descriptive Statistics (investing.com) 

 
The table gives a detailed descriptive statistics of the data downloaded from the website 

investing.com 

 

Index Name Code Stock 

Exchange 

Currency Time 

Frame 

Period Price 

Type 

Ftse Italia All 

Share Basic 

Resources 

 

FTITLMS5510 Milan Euro Monthly Dec 2009 

– Sept 

2021 

Last Price 

avg 

Ftse Italia All 

Share 

Construction & 

Materials 

 

FTITLMS5010 Milan Euro Monthly Dec 2009 

– Sept 

2021 

Last Price 

avg 

Ftse Italia All 

Share 

Chemicals 

 

FTITLMS5520 Milan Euro Monthly Dec 2009 

– Sept 

2021 

Last Price 

avg 

 

 

A time varying energy intensity, or energy efficiency, is included in the model12. All the necessary 

energy-efficiency measures were downloaded from Odyssee Mure project website13. And 

specifically: the Primary Metals (ISIC 24) Energy Intensity at constant price (koe/EUR2015); the 

Intensity of CO2 emissions of the Steel industry (tCO2/t); the Specific Energy consumption of the 

Steel industry (toe/t); the Non-Metallic Minerals (ISIC 23) Energy Intensity at constant price 

(koe/EUR2015); the Intensity of CO2 emissions of the Cement industry (electricity included) (tCO2/t); 

the Specific Electricity consumption of the Cement industry (kWh/t); the Chemical Industry (ISIC 20-

21) value-added Energy Intensity at constant price (koe/EUR2015); the value-added total CO2 

Intensity of the Chemical industry (kCO2/ EUR2015). All the energy-efficiency data are at annual 

level. The details on the calculations of the abovementioned ratios are given in the table below.  

 

 
12 In the recent years all the energy intensity measures seem to have a decreasing trend which testify to the fact that the 

energy efficiency is improving in all the industrial sectors. The inclusion of these measures in the model corrects the energy 
consumption data where necessary and puts the focus on the real impact that the latter have on the productivity of the 
firms and, therefore, on the stock prices. 
13 https://www.odyssee-mure.eu/ A project supported by H2020 programme of the European Commission which 

monitors energy consumption, efficiency trends and energy efficiency policy measures by sector for EU countries, Norway, 
Serbia, Switzerland, and the UK. 

https://www.odyssee-mure.eu/
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Table 16: Description of the Calculation of Energy Efficiency Measures (Odyssee – 

Mure database) 
 

Energy Efficiency Measure Calculation 

Energy intensity of Primary Metals (at exchange 

rate) 

The ratio between the final energy consumption 

and the value added at constant price 

(koe/EUR2015) 

Total CO2 emissions of Steel per ton (included 

electricity) 

The ratio between total CO2 emissions and total 

Steel production measured in tons (tCO2/t) 

Unit consumption of crude Steel 

The ratio between the energy consumption of 

the Steel industry and the steel production 

measured in tons (toe/t) 

Energy intensity of Non-metallic Minerals (at 

exchange rate) 

The ratio between the final energy consumption 

and the value added at constant price 

(koe/EUR2015). 

Total CO2 emissions of Cement per ton 

(included electricity) 

The ratio between total CO2 emissions and total 

Cement production measured in tons (tCO2/t) 

Unit consumption of electricity of Cement 

The ratio between the electricity consumption of 

the Cement industry and the Cement production 

measured in tons (kWh/t). 

Energy intensity of Chemicals (at exchange 

rate) 

The ratio between the final energy consumption 

and the value added at constant price 

(koe/EUR2015) 

Total CO2 intensity of Chemicals (included 

electricity) 

The ratio between total CO2 emissions and total 

Chemicals production measured in EUR2015 

(kCO2/EUR2015) 

 
The table gives the official definition of the energy efficiency measures (column on the left) and the detail on their calculation 

(column on the right). 

 

Source: Odyssee-Mure 

 

As soon as the energy efficiency data are available only at annual level, the monthly time series had 

to be produced artificially. Denton14 procedure in Stata software was used for this purpose, using as 

the indicator time series monthly energy prices (PUN, Prezzo Unico Nazionale) downloaded from 

the official website of the Italian energy market (www.mercatoelettrico.org). The table below shows 

the correlations between energy efficiency measures and the energy price in Italy. The values are 

 
14 Denton procedure (Denton, 1971), a univariate method of temporal disaggregation with indicators. For the conversion 

of low frequency data into high frequency data, this approach considers an indicator series, available at high frequency, 
which is correlated with the original time series, and then fills in the latter’s missing high frequency values according to the 
movements of the indicator series. It minimises the sum of squares of the deviations between the indicator and the resulting 
series (can be done on levels, first differences or second differences). 

http://www.mercatoelettrico.org/
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positive and reasonably high for the PUN time series be considered the indicator for the Denton 

temporal disaggregation method. 

 

Table 17: Correlation between energy and CO2 emissions intensities and the Italian 
energy price (PUN) 

 

 Energy efficiency measures 

Energy 

intensity of 

Primary 

Metals 

(koe/EUR20

15) 

Unit 

consumpti

on of 

crude 

steel 

(toe/t) 

Total CO2 

emissions of 

steel per ton 

(tCO2/t) 

Energy 

intensity of 

non-metallic 

minerals 

(koe/EUR20

15) 

Unit 

consumpti

on of 

electricity 

of Cement 

(kWh/t) 

Total CO2 

emissions of 

cement per 

ton 

(tCO2/t) 

Energy 

intensity of 

Chemicals 

(koe/EUR20

15) 

Total CO2 

intensity of 

Chemicals 

(kCO2/EU

R2015) 

PUN 

(€/MWh) 
0,66 0,57 0,70 0,29 0,40 0,50 0,65 0,69 

 
 

Temporal disaggregation methods, such as the Denton method (Denton, 1971), are widely used in 

official statistics to obtain high-frequency estimates of key economic indicators (Sax & Steiner, 2013 

among others). The necessity to convert low frequency energy efficiency measures into high 

frequency series in this research was dictated by the fact that they had to be used in combination 

with the energy consumption series which was available at monthly level. Its use at annual level 

would have led to information loss. Besides, the decision to perform tests only with annual data 

would further restrict the available data set which is not particularly large. 

 

The energy efficiency measures were associated with the industrial sector electricity consumption 

provided by Terna in the following way:  

 

Table 18: Matching of Energy Efficiency Measures to Industrial Electricity 

Consumption by sector 
 

 

Energy Efficiency Measure Sector Electricity Consumption 

 

Primary Metals (ISIC 24) Energy Intensity 

CO2 emissions of Steel per ton 

Unit Energy consumption of Steel 

  

 

Steel 

Non-Ferrous Metals 

 

 

Non-Metallic Mineral (ISIC 23) Energy Intensity 

CO2 emissions of Cement per ton 

Unit Electricity consumption of Cement 

 

 

Cement, Limestone and Plaster 
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Chemical industry (ISIC 20-21) Energy Intensity 

CO2 emissions Intensity of Chemical industry 

 

 

Chemicals 

 

Table 19: Descriptive Statistics (Italian industrial energy Indicators) 

 

The table gives a detailed descriptive statistics of the data downloaded from the Odyssee-Mure 

database. 

 

Indicator 

Variable in 

regression 

models 

Odyssee-

Mure 

Indicator 

Name 

 Industry Calculation Data 

source 

Unit Period Data 

Frequency 

 

XPMEnInt 

Energy 

intensity of 

Primary 

Metals (at 

exchange 

rate) 

 

 Primary 

Metals  

ISIC 24 

Final energy 

consumption 

per value 

added at 

constant price  

 

Odyssee koe/EUR2015 2010 – 

2020 

Annual 

XCO2Steel Total CO2 

emissions of 

steel per ton 

(included 

electricity) 

 

 Steel CO2 per ton 

of 

production 

Odyssee tCO2/t 2010 – 

2020 

Annual 

 

XUConsS 

Unit 

consumption 

of crude 

steel 

 Steel Energy 

consumption 

per ton of 

production  

Odyssee toe/t 2010 – 

2020 

Annual 

 

XNMMEnInt 

 

 

 

 

 

 

 

 

 

XCO2Cem 
 

 

 

 

 

 

 

Energy 

intensity of 

non-metallic 

minerals (at 

exchange 

rate) 

 

 

 

 

Total CO2 

emissions of 

cement per 

ton 

(included 

electricity) 

 

 

  

 

Non 

metallic 

Mineral 

ISIC 23 

 

 

 

 

 

Cement 

 

 

 

 

 

 

 

 

 

Final energy 

consumption 

per value 

added at 

constant 

price 

 

 

CO2 per ton 

of 

production 

 

 

 

 

 

 

 

 

Odyssee 

 

 

 

 

 

 

 

Odyssee 

 

 

 

 

 

 

 

 

 

 

koe/EUR2015 

 

 

 

 

 

 

 

tCO2/t 

 

 

 

 

 

 

 

 

 

 

2010 – 

2020 

 

 

 

 

 

 

2010 – 

2019 

 

 

 

 

 

 

 

 

 

Annual 

 

 

 

 

 

 

 

Annual 
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XUConsELCem 
 

Unit 

consumption 

of electricity 

of Cement 

 

 

 

Cement 

 

Electricity 

consumption 

per 

production 

in tons 

 

Odyssee 

 

kWh/t 

 

2010 – 

2019 

 

Annual 

 

XChemEnInt 
 

 

 

 

 

 

 

 

XCO2Chem 
 

Energy 

intensity of 

Chemicals 

(at 

exchange 

rate) 

 

 

 

 

Total CO2 

intensity of 

Chemicals 

(included 

electricity) 

 

 

 Chemical 

Industry  

ISIC 20-

21 

 

 

 

 

 

 

Chemical 

Industry  

 

Final energy 

consumption 

per value 

added at 

constant 

price 

 

 

 

 

CO2 

emissions 

per value 

added at 

constant 

price 

Odyssee 

 

 

 

 

 

 

 

 

 

Odyssee 

koe/EUR2015 

 

 

 

 

 

 

 

 

 

kCO2/EUR2015 

 

2010 – 

2020 

 

 

 

 

 

 

 

 

2010 – 

2019 

Annual 

 

 

 

 

 

 

 

 

 

Annual 

 

 

Since the list of the firms included in each of Terna sectors is not available, approximate tables were 

produced manually for each year starting from 2010 based on the listed firms belonging to each 

sector (the data are available on the Borsa Italiana15 website). Then, the value-weighted sector price-

earnings and book-to-market time-series were produced manually based on data contained in 

Mediobanca annual reports16: PE All Metals, BTM All Metals, PE Cement, BTM Cement, PE 

Chemicals, BTM Chemicals. All the data are at annual level. The period for which price-earnings and 

book-to-market ratios are available is 2010 – 2018. The price-earnings and book-to-market series 

were produced manually by means of the following procedure: for each year the list of the companies 

included in each industrial sector (All Metals, Cement and Chemicals), considering new listings and 

delistings, was made up on the basis of historical archive data on Borsa Italiana website. Then the 

market values (Borsa Italiana data referred to the end of June of each year) relative to each year 

were used to produce the year sum (sector’s annual market cap). Next, for each company the 

market-value coefficients were calculated as the ratio of the company’s market cap and the 

cumulative sector’s market cap. After that the companies’ price-earnings and book-to-market ratios 

from Mediobanca annual reports (data relative to the end of December of each year) were 

multiplicated by the value-coefficients obtained before and the results were summed to get the value-

 
15 https://www.borsaitaliana.it/borsa/azioni/all-share/lista.html  
16 
http://archiviostoricomediobanca.mbres.it/pubblicazioni/indici_e_dati_relativi_ad_investimenti_in_titoli_quotat
i.html  

https://www.borsaitaliana.it/borsa/azioni/all-share/lista.html
http://archiviostoricomediobanca.mbres.it/pubblicazioni/indici_e_dati_relativi_ad_investimenti_in_titoli_quotati.html
http://archiviostoricomediobanca.mbres.it/pubblicazioni/indici_e_dati_relativi_ad_investimenti_in_titoli_quotati.html
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weighted sector price-earnings and book-to-market ratios for each year. As soon as the regressions 

require monthly data and not annual, price-earnings and book-to-market ratios were spread to cover 

12 months in each year. 

 

Table 20: The list of firms considered for the calculation of sector PE and BTM ratios 

 

All Metals Cement Chemicals 

PE BTM PE BTM PE BTM 

DANIELI 

DANIELI &.C RSP 

SOCOTHERM 

TENARIS 

GRUPPO MINERALI MAFFEI 

INTEK GROUP 

INTEK GROUP RNC 

KME GROUP 

KME GROUP RSP 
 

BUZZI UNICEM 

BUZZI UNICEM RSP 

CALTAGIRONE 

CEMENTIR HOLDING 

ITALCEMENTI  

ITALCEMENTI RSP 

RDB 
 

MONTEFIBRE 

MONTEFIBRE RSP 

ISAGRO 

ISAGRO SVI PRF 

SOL 

SACOM 

SOCOTHERM 

BIO ON 

AQUAFIL 

ICF GROUP 
 

 

Period 2009-2018. Cumulative firm denominations list. PE and BTM ratios subject to the availability of data in Mediobanca 

reports and to new listings/delistings over the period considered. 

 

The daily data on Italian forward energy prices (relative to MTE market) were downloaded from the 

official website of the Italian energy market (www.mercatoelettrico.org). The data was then used to 

calculate the volume-weighted average monthly price series which was then transformed into MoM 

and YoY series according to the necessity, and, if seasonality was present (MoM series), it was then 

removed by the Tramo-Seats procedure by means of Demetra+ software. 

 

The monthly data on the Italian inflation index (HICP, Harmonised Index of Consumer Prices17, not 

seasonally adjusted, 2015=100), needed for the calculation of the real stock return (RRR = (1 + stock 

return)/(1 + inflation) -1), were downloaded from the website of the Statistical Data Warehouse of 

the European Central Bank. Monthly data (levels) for the period Jan 2009 – Mar 2023, and annual 

change (YoY) for the same period. Then, MoM series were produced manually taking the series of 

the level data and used in the calculation of the sector real rates of return. 

 
The historical monthly data on the carbon permits’ prices were downloaded from 

www.mercatoelettrico.org  website of the Energy Market Manager (GME). Until October 2017 there 

were four types of Energy Efficiency Certificates (TEE) distinguished on the basis of the kind of 

energy savings that the firm made:  

 
17 
https://sdw.ecb.europa.eu/quickview.do;jsessionid=B1C4EDAD18BE5D8123BAFC8D92B70A33?SERIES_K
EY=122.ICP.M.IT.N.000000.4.INX 
 

http://www.mercatoelettrico.org/
http://www.mercatoelettrico.org/
https://sdw.ecb.europa.eu/quickview.do;jsessionid=B1C4EDAD18BE5D8123BAFC8D92B70A33?SERIES_KEY=122.ICP.M.IT.N.000000.4.INX
https://sdw.ecb.europa.eu/quickview.do;jsessionid=B1C4EDAD18BE5D8123BAFC8D92B70A33?SERIES_KEY=122.ICP.M.IT.N.000000.4.INX
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- type I certificates, issued for primary energy savings due to the reduction of final electricity 

consumption. 

- type II certificates, issued for primary energy savings due to the reduction of natural gas 

consumption. 

- type III certificates, issued for savings of forms of primary energy other than electricity and 

natural gas achieved in sectors different from the transport sector. 

- type IV certificates, issued for savings of forms of primary energy other than electricity and 

natural gas achieved in the transport sector. 

 

So, only type I certificates were considered in the data series for the present analysis. However, after 

the 2017 the distinction of three types was substituted by one Unified Type, so, it was impossible to 

distinguish the certificates relative to the electricity consumption reduction anymore. The obtained 

final data series is a merge of type I series and the subsequent unified type series. The relative daily 

data was then volume-weighted and monthly averaged manually. Then, the month-over-month and 

the year-over-year series were produced and appropriately seasonally adjusted by Demetra+ 

software if the seasonality was detected. 

 
 

2.2.2. Methodology 
 

 

The main reference for the methodology of this research is the first specification of technology in 

Burnside et al. (1995): the non-substitutability of the energy input by other inputs. This is because a 

certain amount of electricity is always needed to make the machinery equipment work and it cannot 

be substituted by any other input for this purpose (Roma and Pirino, 2009). Another peculiar aspect 

of the energy input is its irreversibility which leads to the difficulty in storage. The entropy is yet 

another important characteristic which leads to the concept of exergy, the only part of the energy 

(“useful energy”) which fully enters the production process. However, the research which considers 

the linkage between exergy and stock returns is reserved for future work and will involve a deep 

study of the physics of energy. 

 

This work studies the linear relationship between individual sectors stock index returns and the 

explanatory variables listed in equation (50) using the OLS regression. In Burnside et al. (1995) the 

logarithmic changes are considered. For a relatively restricted dataset (as in this research) a 

reasonable approximation of the logarithmic transformation and first differentiation is the month-over-

month growth rate. Besides it, also the year-over-year growth rate was computed as in Zhi Da et al. 

(2017). 
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The electricity consumption variable (EC) was used in the regressions as a lagged variable. Whereas 

the year-over-year data regressions included the one-month lag of the EC, there were some doubts 

regarding the EC lag to be chosen for the month-over-month regressions. The reason for that is that 

the moments when electricity is consumed and the moment when the impact on stock prices 

becomes visible, may differ significantly. They depend on the average length of the production 

cycle18 in each industrial sector and the speed with which the stock market becomes aware of the 

changes in productivity of this or that industrial sector. The chain of impacts is as follows: Electricity 

Consumption -> Output (Productivity) -> Market Valuation -> Stock prices -> Stock Returns. The 

main reference data on industrial production for the stock market is the general Italian Industrial 

Production Index (IPI), which shows the change in volume of the overall industrial production in Italy 

with respect to the base year (2010 or, more recently, 2015), and is issued with one and a half 

months of delay by ISTAT. The electricity consumption of Steel sector is strongly correlated (0,93) 

with the IPI calculated both with base year 2010 and 2015; the electricity consumption of Cement is 

also correlated with IPI but the value is different for two versions (for 2010=100 correlation is 0,62, 

for 2015=100 correlation is 0,81); the electricity consumption of Chemicals has also different 

correlation with the two versions of IPI (for 2010=100 correlation is 0,46, for 2015=100 correlation is 

0,64) (see Appendix A for the relative graphs). So, the time lag between the consumption of energy 

and the change in stock returns may rightfully be of several months. Judging by the high correlation 

between IPI and EC, it is probable that the stock market considers the IPI trend coinciding with that 

of the EC of the Steel sector. Therefore, one can hypothesise that the one-month or the two-months 

lag of the Steel electricity consumption should be most significant in the regression analysis. For the 

Cement and the Chemicals sector the answer is less certain and several lags of the electricity 

consumption variable should be tested. Therefore, an empirical check was due and, thus, the lags 

from one to six months of the electricity consumption variable for the three energy-intensive Italian 

industrial sectors were tested to choose the best one to be used in the part of research concerning 

the month-over-month data. 

 

Also, since electricity consumption series do not entirely reflect the productivity of the firm which 

depends greatly on the energy efficiency of the equipment, some energy intensity measures (both 

physical per ton of production and value-added per value in euro of 2015 production) had to enter 

the OLS regressions as shown in model (40) and later indicated by the simplified model equation 

(50). In fact, given different efficiencies in the use of energy, the same input will produce a different 

product output and CO2 emissions. The list of the used energy intensity measures was presented 

above in the Data section. The justification for their use as linear input variables in the regression is 

analogous to the justification provided by BER 95 in a specific measure of production intensity called 

 
18 The length of the production cycle depends on many factors: the type of product which is being produced; whether the 

plant performs the full production cycle or only a part of it; whether the machinery is up to date from the energy efficiency 
point of view; the size of a series; the availability of constant supply of raw materials etc. 
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“line speed” which is a measure of the energy efficiency of the machinery. More details on the matter 

were presented in Section 2.1.2. The main idea was the existence of a close linkage between the 

variable electricity consumption and the changes in line speed, the intensity of capital usage, and, 

therefore, the energy intensity. Having both physical and value-added energy intensities, these 

variables were tested separately. They could not be used in a regression together because of the 

multicollinearity issue. The following table shows the high correlation between the energy intensities 

of the industrial sectors under consideration. These are the correlations between the annual data 

series of energy intensities.  It is clear that the monthly disaggregated time-series are correlated 

between themselves because they are all correlated to the indicator series of energy price (PUN): 

 

Table 21: Correlations check between the energy intensities of the energy-intensive 
industrial sectors. 

 

Correlations 

↓→ 

Energy Intensity of 

Primary Metals 

(koe/EUR2015) 

Energy Intensity of 

Non-Metallic 

Minerals 

(koe/EUR2015) 

 

Energy Intensity of 

Steel (toe/t) 0,43  

 

Electricity Intensity 

of Cement (kWh/t) 
 0,87  

 

For the Steel sector: correlation between the unit consumption of energy per ton of product of crude steel (toe/t) 

and the energy intensity of Primary Metals sector (koe/EUR2015). For the Cement sector: correlation between 

the unit consumption of electricity per ton of product (kWh/t) and the energy intensity of Non-Metallic Minerals 

sector (koe/EUR2015). Sample Period: 2009 – 2020. 

 

The multicollinearity problem also concerns the intensity of CO2 emissions which is also among the 

energy efficiency measures that are included in the regression equations due to its inverse 

relationship with the energy efficiency as theoretically explained in the previous section. However, 

the empirical check is indispensable to confirm that the intensity of CO2 emissions is a proxy for the 

electricity consumption with reference to the Italian industrial sectors. To give the affirmative answer 

to this question, there should be high correlation between the sector CO2 emissions intensity and 

the sector energy intensity. In fact, when similar tests are performed on the Italian energy-intensive 

industrial sectors, the abovementioned correlations are particularly high: 
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Table 22: Correlations check between the energy intensities and CO2 emissions 
intensity of the energy-intensive industrial sectors. 

 

Correlations 

↓→ 

CO2 Intensity of 

Steel (tCO2/t) 

CO2 Intensity of 

Chemicals 

(kCO2/EUR2015) 

CO2 Intensity of 

Cement (tCO2/t) 

 

Energy Intensity of 

Steel (toe/t) 0,97   

Energy Intensity of 

Primary Metals 

(koe/EUR2015) 0,54   

 

Energy Intensity of 

Chemicals 

(koe/EUR2015) 

 

 0,75  

 

Electricity Intensity 

of Cement (kWh/t) 
  0,97 

Energy Intensity of 

Non-Metallic 

Minerals 

(koe/EUR2015) 

  0,90 

 
For the Steel sector: correlation between the unit consumption of energy per ton of product of crude steel (toe/t), 

the energy intensity of Primary Metals sector (koe/EUR2015) and the intensity of CO2 emissions of steel 

production per ton of product (tCO2/t). For the Chemical sector: correlation between the energy intensity per 1€ 

(base 2015) of production value (koe/EUR2015) and the intensity of CO2 emissions of chemical production per 

1€ (base 2015) of production value (kCO2/EUR2015). For the Cement sector: correlation between the unit 

consumption of electricity per ton of product (kWh/t), the energy intensity of Non-Metallic Minerals sector 

(koe/EUR2015) and the intensity of CO2 emissions of cement production per ton of product (tCO2/t). Sample 

Period: 2009 – 2020. 

 

Therefore, the intensity of CO2 emissions was rightfully tested on par with energy intensities but not 

with them in the same regression to prevent the arising of multicollinearity which could bias the 

results. 

 

Therefore, the equation (50) could not be tested in its full version with all the indicated regressors 

but only in reduced forms, including one energy efficiency measure at a time.  

 

Besides, also the reduced forms of regressions with only the electricity consumption variable were 

tested to see the pure impact of the EC on stock returns and then check how the situation changes 

with the addition of other variables.  
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The forward energy price variable was added to the regressions following the solution to the 

maximization and minimisation problems of an energy-intensive firm (a steel company) which was 

presented in Section 2.1.4. However, the change in forward energy price does not lead to immediate 

improvements in energy efficiency of the equipment which lead to the increase in the output and the 

productivity which in turn force a change in the relative stock returns. This delay is very difficult to 

estimate, and it very much depends on the company’s individual decisions in response to the forward 

energy price change (different elasticities with respect to the energy forward price). Therefore, the 

time lag was checked empirically by testing the lags of the forward energy price variation from one 

to six months, and then using the most statistically significant lag in the multiple regression analysis. 

 

The carbon permits’ price which was added to the main equation (50) as a control variable even if 

its use is not justified by the theoretical model. It could work like the forward energy price in boosting 

the improvement in the energy efficiency of the equipment which then leads to the increase in 

productivity and a decrease in stock returns (the investors do not ask for higher returns for the risk 

taken if the company is more productive and, hence, healthier). According to the logics of the speed 

of adjustment of energy efficiency described in the previous paragraph, the change in carbon 

permits’ price could produce effects with a delay. Therefore, the lags from one to six months were 

tested and the most significant one was used in the regressions.  

 

So, the analysis starts with the check on the performance of two other popular financial variables in 

the asset pricing literature: price-earnings ratio (P/E) and book-to-market ratio (B/M) of the industrial 

sectors under consideration by means of OLS regressions. So, the empirical analysis begins with 

the regressions of sector book-to-market and price-earnings series against the contemporaneous 

sector MoM and YoY electricity consumption and the sector energy efficiency measures in order to 

assess whether the former ratios are related to the growth rate in electricity consumption of the 

sector corrected for energy efficiency and if so, whether the electricity consumption growth rate may 

substitute price-earnings and book-to-market ratios in the sector models of prediction of industrial 

sector stock returns. This analysis is useful to see the channel through which the impact of the 

electricity consumption on the stock prices occurs (which is the variable, P/E or B/M or none of the 

two, which reacts to the change in market valuation of the this or that industrial sector due to the 

change in sector productivity). The regression analysis of this section shows which of the financial 

ratios (P/E or B/M or none of the two) would be the best to use in the final multiple regression for 

each industrial sector because their variations are not explained for the most part by the electricity 

consumption corrected by the energy efficiency measures and, thus, they could add some 

information to the final predictive model. 
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The analysis proceeds with the tests on the month-over-month data series (the dependent variable 

being the MoM growth rate of the industrial sector price index, the independent variables – MoM 

sector electricity consumption, energy efficiency measures, the MoM growth of the forward energy 

price and the MoM growth of the carbon permits’ price). First, in order to decide which lag of the 

electricity consumption variable to use, the single-factor regressions were performed. Then, the most 

statistically significant lag was used in multiple-factor regressions with energy efficiency measures. 

When the most significant energy efficiency measure was determined, then it was used in yet other 

regressions with the best lag of the forward energy price change and of the carbon permits’ price 

change. 

 

Then, in addition to the regressions with MoM data, also the regressions with YoY data were 

performed. Zhi Da et al. used the year-over-year electricity usage growth rate (YoY EC) which above 

all was useful to remove the seasonality from the series. It is computed as the difference between 

the energy consumption of the same month of year t and of year t-119. This procedure is not 

necessary anymore for the sake of the seasonal adjustment which in this research is computed by 

the Demetra+ software, however, the regression tests (the OLS procedure, the ordinary least 

squares) are also carried out on the year-over-year time-series to see whether the results are 

comparable with those obtained by Zhi Da et al. for the US stock market. The monthly YoY sector 

price index growth series (the series of returns) acts as the dependent variable in the regression 

where the independent variables are the monthly YoY sector electricity consumption growth, energy 

efficiency measures and the forward energy price YoY growth rate. 

 

Finally, the multiple regressions with all the best previously chosen regressors for each of the three 

energy-intensive Italian industrial sectors (Basic Resources, Construction & Materials and 

Chemicals) were performed, and the conclusions were drawn. 

 

  

 
19 For instance, the Year-over-year growth of electricity consumption (EC) referred to June 2013 is computed as (EC 

June 2013 – EC June 2012) / EC June 2012.   
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2.3. Models with Financial Variables.  
 

In the setting of the model elaborated in this research (equation 39 and equation 41), where the dual 

output generated only by the energy input impacts the stock returns, it would be highly informative 

to see whether (and by which channel) the electricity consumption corrected by the energy efficiency 

measures influences the financial variables (Book-to-Market ratio and Price-Earnings ratio) which 

are commonly used to predict stock returns. The setting of this study suggests that it occurs through 

the channel of productivity (output) and sector energy efficiency. The analysis with the inclusion of 

two most used financial ratios (B/M and P/E) will show if this supposition is correct. Then, if the logics 

of passing through output and productivity to explain market valuation of the industrial sectors is not 

entirely plausible for some of the chosen industrial sectors and thus, the percentage of the variation 

explained by the models with electricity consumption and energy efficiency measures is not high 

(and the correlation with other regressors is acceptable), it could be useful to add those financial 

ratios to the selected reduced models for the industrial sectors under consideration to get the 

augmented models for the optimal explanation of sector stock returns. Because in this case it would 

mean that B/M and P/E are constructed by considering some other information rather than those 

referred to production volumes and the greenhouse gasses emitted in the atmosphere, and, hence, 

they could bring some additional information to the models. 

 

As it was already mentioned before, the electricity consumption alone may increase the output and 

the productivity of a firm, but it does not say anything about its future perspectives, it does not show 

if the firm is investing in more efficient productive equipment and, thus, in its own growth. So, the 

impact on stock returns of an increase in output due to higher electricity consumption may or may 

not be of the expected sign and magnitude because the market, apart from the volume of production, 

analyses a series of other data to decide which price the stock should have.  

 

The indicator of future growth of a firm is its B/M ratio (company’s book value / the value that the 

market gives it). If it is high, then the firm is a value-firm whose growth potential is considered low by 

the market; if it is low, then the market believes that the firm is healthy and has a good growth 

potential. Considering the data under consideration in this research, the companies that invest in the 

energy efficiency of their equipment are usually growth firms. Then the energy efficiency measures 

are the indicator of the firm’s virtuous performance and healthy future. 

 

On the other hand, there is the Price-Earnings ratio (company’s share market price / book earnings 

per share) which depends on the firm’s earnings, the sales growth, profit margins, the volatility in 

performance, the debt/equity ratio, the dividend policy, the quality of management, and indicates 

future earnings growth. When P/E is high, it means that the stock is either overvalued or investors 

expect high growth rates in the future because the company has invested a lot in its growth. When 
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P/E is low, the stock is undervalued, and the investors consider it a good buy. Taking the data of this 

study, all the other determinants of the P/E ratio remaining constant, earnings should depend more 

on the volume of the output and productivity than on the energy efficiency of the equipment. Then it 

would be logical to expect high significance of the electricity consumption variable in explaining the 

variations in the P/E ratio. 

 

Then, in the regressions having the Book-to-market ratio as the dependent variable, the energy 

efficiency measures are supposed to be significant and to have a positive sign, and in the regressions 

having the stock returns as the dependent variable, the B/M is supposed to be significant and to 

have a positive sign as well. Naturally, this does not apply to situations when the energy efficiency 

of the sector is abnormally high or abnormally low, the results could deviate from what was expected. 

 

Accordingly, in the regressions with the Price-Earnings ratio as the explained variable, the electricity 

consumption variable (MoM or YoY change) is supposed to be significant and to have a negative 

sign if it is the main driver of the P/E. In case of the regressions with stock returns the P/E ratio could 

take different signs based on what the market believes and not only see. Also, the energy efficiency 

conditions of the industrial sector could be such (e.g. extremely low) that the sign could be reversed. 

 

The market inefficiencies (mispricing of the attributes determining B/M and P/E ratios) could lead to 

the anomalies in B/M and P/E ratios (e.g. unexpected coefficient signs). Therefore, the regressions 

are aimed at highlighting the cases when the B/M and the P/E ratios behave according to the 

expectations, and only in those cases and for those sectors the conclusion is drawn whether they 

must (or must not) be included in the final sector regression. 

 

Section 2.3.1. regresses the sector book-to-market ratios against the electricity consumption (both 

month-over-month and year-over-year) alone and in combination with energy efficiency measures. 

Section 2.3.2 is dedicated to the similar check but this time on the price-earnings ratio.  

 
 

2.3.1. Electricity Consumption and Book-to-Market 
  
In this section the relationship between the book-to-market ratio (B/M) of each sector index and the 

variables describing the conditions of production of the industrial sector is investigated. The results 

of the OLS regression of the B/M on the contemporaneous explanatory variables are presented in 

what follows for each of the sectors. 
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2.3.1.1. Month-over-Month data: 
 
The following table serves as the synthetic representation of the OLS regression results of the sector 

book-to-market ratios against the month-over-month data on electricity consumption and energy 

efficiency measures for Basic Resources (Metals), Construction & Materials (Cement) and 

Chemicals sectors. 

 

Table 23: OLS Regressions: Book-to-market ratios of Metals, Cement and 
Chemicals sectors against MoM electricity consumption of the associated industrial 

sectors and sector energy efficiency measures. 
  

The regressors and the models tested:  

 
Y1t is Book-to-market ratio of Metals sector at time t,  

XMoMECS t is MoM Seasonally Adjusted Electricity Consumption of Steel sector at time t;  

xPMEnInt t is the Energy intensity of Primary Metals sector (koe/EURO 2015) at time t; 

xUConsS t is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time t; 

xCO2Steel t is the Intensity of CO2 emissions of Steel sector (tCO2/t) at time t. 

 

Model 1: Y1t = β0 + β1 xMoMECS t + εt 

 
Model 2: Y1t = β0 + β1 xMoMECS t + β2 xPMEnInt t + εt 

 

Model 3: Y1t = β0 + β1 xMoMECS t + β3 xUConsS t + εt 

 

Model 4: Y1t = β0 + β1 xMoMECS t + β4 xCO2Steel t + εt 

 

Y2t is Book-to-Market ratio of Cement sector at time t, 

xMoMECCem t is MoM Seasonally Adjusted Electricity Consumption of Cement sector at time t;  

xNMMEnInt t is the Energy intensity of Non-Metal Mineral sector (koe/EURO 2015) at time t;  

xUConsC t is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time t; 

xCO2Cem t is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time t. 

 

Model 5: Y2t = β0 + β1 xMoMECCem t + εt 

 
Model 6: Y2t = β0 + β1 xMoMECCem t + β2 xNMMEnInt t + εt 

 

Model 7: Y2t = β0 + β1 xMoMECCem t + β3 xUConsC t + εt 

 

Model 8: Y2t = β0 + β1 xMoMECCem t + β4 xCO2Cem t + εt 

 

Y3t is Book-to-market ratio of Chemicals sector at time t,  

XMoMECChem t is MoM Seasonally Adjusted Electricity Consumption of Chemicals sector at time t;  

xChemENInt t is the Energy intensity of Chemicals sector (koe/EUR2015) at time t;  

xCO2Chem t is the Intensity of CO2 emissions of Chemicals sector (kCO2/EUR2015) at time t. 

 
Model 9: Y3t = β0 + β1 xMoMECChem t + εt 

 
Model 10: Y3t = β0 + β1 xMoMECChem t + β2 xChemEnInt t + εt 

 
Model 11: Y3t = β0 + β1 xMoMECChem t + β4 xCO2Chem t + εt 
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The table describes the results of the OLS regressions performed on the following variables: the Book-to-Market of Metals 
sector (the dependent variable in models 1, 2, 3, 4), the book-to-market ratio of the Cement sector (the dependent variable in 
models 5, 6, 7, 8), the book-to-market ratio of the Chemicals sector (the dependent variable in models 9, 10, 11), the month-
over-month change of the electricity consumption of the Steel, Cement and Chemicals sectors (Electricity Consumption) the 
value-added energy intensity of the Primary Metals, Non-Metal Mineral and Chemicals sectors (Energy Intensity value-added), 
the physical energy intensity of the Steel sector and the physical electricity intensity of Cement sector (Energy Intensity), the 
physical CO2 emissions intensity of the Steel sector and the value-added CO2 emissions intensity of Chemicals sector (CO2 
Intensity). Sample period: Feb 2010 – Dec 2018. 
 
 

The table above shows the cumulative regression results which reveal at first glance that the energy 

efficiency measures all feature the expected (positive) sign meaning that the chain of impacts is 

consistent with the setting of the elaborated model: energy/CO2 intensities, which are the inverse of 

the energy efficiency, impact the output and the productivity in the opposite direction; then if the B/M, 

as well as the stock returns, follow the logics of the elaborated model, they should move in the 

opposite direction with the energy efficiency (B/M is lower for higher energy efficiency of the firm 

because the market values highly its growth potential and increases its market value). In fact, the 

table above shows that this chain of impacts works well. However, the electricity consumption 

variable, if used alone, is significant only for the Metals sector. The positive sign is consistent with 

the model setting: the increase in electricity consumption (the decrease in MoM electricity 

consumption) influences positively the output and the productivity of a firm and then positively stock 

prices and negatively the B/M and the stock returns. This means that the electricity withdrawals of 

that sector alone (extremely high amounts with respect to the electricity usage of other industrial 

sectors), together with energy efficiency measures, can influence the market valuation of the health 

of the Metals sector. This happens because the production process of this sector is extremely 

energy-intensive and highly energy efficient, meaning a direct linkage between the quantity of 

consumed energy and the productivity. 

 

A closer look uncovers that the electricity consumption of the Cement sector, adjusted for energy 

efficiency, does not explain the variability of the book-to-market ratio of the Cement sector. Only the 
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CO2 emissions intensity is significant at 5% level but the model which includes it explains only 3,5% 

of the variability in the sector B/M. As it was shown at the end of Section 2.1. the relative industrial 

sector is not at all virtuous from the energy efficiency point of view. So, these results are consistent 

with that information. Therefore, the Book-to-Market ratio of the Cement sector is based on some 

other information rather than the energy efficiency data.  

 

The other two industrial sectors (Metals and Chemicals) are much more performing in terms of 

energy efficiency and, in fact, the electricity consumption variable for those sectors corrected by 

energy efficiency measures (only the energy and CO2 emissions intensities for the Chemicals 

sector) explains an important part of the variability of the sector book-to-market ratio (up to 35% for 

the Metals sector and up to 54% for the Chemicals sector). However, if the energy efficiency 

measures are not used in the model, the B/M of these sectors is explained very little (Metals 3,6%) 

or not at all (Chemicals). Therefore, the B/M ratios of these two sectors are determined by information 

on sector energy efficiency which is generally the main indicator of future productivity growth.  

 
2.3.1.2. Year-over-Year data: 
 

Table 24: OLS Regressions: Book-to-market ratios of All-Metals, Cement and 
Chemicals sectors against YoY electricity consumption of the associated industrial 

sectors and sector energy efficiency measures. 
 

The regressors and the models tested: 

 
Y1t is Book-to-market ratio of Metals sector at time t, 

XYoYECS t is YoY Electricity Consumption of Steel sector at time t; 

xPMEnInt t is the Energy intensity of Primary Metals sector (koe/EURO 2015) at time t; 

xUConsS t is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time t; 

xCO2Steel t is the Intensity of CO2 emissions of Steel sector (tCO2/t) at time t. 

 

Model 1: Y1t = β0 + β1 xYoYECS t + εt 

 
Model 2: Y1t = β0 + β1 xYoYECS t + β2 xPMEnInt t + εt 

 

Model 3: Y1t = β0 + β1 xYoYECS t + β3 xUConsS t + εt 

 
Model 4: Y1t = β0 + β1 xYoYECS t + β4 xCO2Steel t + εt 
 

Y2t is Book-to-market ratio of Cement sector at time t,  

xYoYECCem t is YoY Electricity Consumption of Cement sector at time t;  

xNMMEnInt t is the Energy intensity of Non-Metal Mineral sector (koe/EURO 2015) at time t;  

xUConsCem t is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time t; 

xCO2Cem t is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time t. 

 

Model 5: Y2t = β0 + β1 xYoYECCem t + εt 

 
Model 6: Y2t = β0 + β1 xYoYECCem t + β2 xNMMEnInt t + εt 

 
Model 7: Y2t = β0 + β1 xYoYECCem t + β3 xUConsCem t + εt 

 

Model 8: Y2t = β0 + β1 xYoYECCem t + β4 xCO2Cem t + εt 
 

Y3t is Book-to-market ratio of Chemicals sector at time t, 

xYoYECChem t is YoY Electricity Consumption of Chemicals sector at time t; 

xChemEnInt t is the Energy intensity of Chemicals sector (koe/EURO 2015) at time t; 
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xCO2Chem t the Intensity of CO2 emissions of Chemicals sector (kCO2/EUR2015) at time t. 

 
Model 9: Y3t = β0 + β1 xYoYECChem t + εt 

 
Model 10: Y3t = β0 + β1 xYoYECChem t + β2 xChemEnInt t + εt 

 
Model 11: Y3t = β0 + β1 xYoYECChem t + β4 xCO2Chem t + εt 

 

 
The table describes the results of the OLS regressions performed on the following variables: the Book-to-Market of Metals 
sector (the dependent variable in models 1, 2, 3, 4), the book-to-market ratio of the Cement sector (the dependent variable in 
models 5, 6, 7, 8), the book-to-market ratio of the Chemicals sector (the dependent variable in models 9, 10, 11), the year-over-
year change of the electricity consumption of the Steel, Cement and Chemicals sectors (Electricity Consumption) the value-
added energy intensity of the Primary Metals, Non-Metal Mineral and Chemicals sectors (Energy Intensity value-added), the 
physical energy intensity of the Steel sector and the physical electricity intensity of Cement sector (Energy Intensity), the physical 
CO2 emissions intensity of the Steel sector and the value-added CO2 emissions intensity of Chemicals sector (CO2 Intensity). 
Sample period: Jan 2011 – Dec 2018. 

 

 

As it can be clearly seen from the table above, if we look only at the energy efficiency measures, the 

tests on the year-over-year data produce almost the same results as those for the month-over-month 

data. So, the logic of the elaborated model is again preserved. The energy efficiency measures are 

still quite essential in the explanation of the sector book-to-market ratios. For the Cement sector, 

which is not highly energy efficient, only one intensity is statistically significant. Neither model nor 

variable is statistically significant for this sector (except for the weak significance of the CO2 

emissions intensity). The electricity consumption variable of the Metals sector is not significant 

compared to the month-over-month single-factor tests. However, if the year-over-year electricity 

consumption is corrected by the energy efficiency measures, the models become immediately highly 

significant. This result could be due to the fact that energy efficiency measures which are originally 

presented at annual level gain more weight in the year-over-year tests. Then the B/M, being an 

annual dummy, relies more on the information that the energy efficiency measures convey. The 

electricity consumption variable becomes insignificant. 

 

For the Chemicals sector the electricity consumption variable becomes highly significant in 

explaining the sector B/M ratio when combined with the value-added CO2 intensity. As far as the 

final model of this sector will include both variables, the B/M ratio will be useless and will only bias 
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the final inference results if added. It is already sufficiently explained (55,4%) by the EC and the CO2 

intensity of the Chemicals sector. 

 

As for the Basic Resources sector, as soon as the final YoY model will include not only the YoY 

electricity consumption but also the physical energy intensity, the share of the explained variability 

of the B/M ratio will be only 13,5%, hence, it could be reasonable to add it to the final sector model. 

 

For the Construction & Materials sector the final YoY model will include the electricity consumption 

and the value-added energy intensity of the Cement sector meaning that the sector B/M ratio should 

also be added to this model given that the former variables do not explain any of its variation. 

 

2.3.2. Electricity Consumption and Price-Earnings. 
 
Now the same check to decide whether this financial variable is necessary in the predictor model of 

Italian sector stock returns will be performed on the sector price-earnings ratios. 

 

2.3.2.1. Month-over-month data: 
 
Table 25: Regression of Price-earnings ratios of All-Metals, Cement and Chemicals 

sectors against MoM electricity consumption of the associated industrial sectors 
and sector energy efficiency measures. 

 

The regressors and the models tested: 

 
Y1t is Price-Earnings ratio of Metals sector at time t,  

xMoMECS t is MoM Seasonally Adjusted Electricity Consumption of Steel sector at time t;  

xPMEnInt t is the Energy intensity of Primary Metals sector (koe/EURO 2015) at time t; 

xUConsS t is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time t; 

xCO2Steel t is the Intensity of CO2 emissions of Steel sector (tCO2/t) at time t. 

 
Model 1: Y1t = β0 + β1 xMoMECS t + εt 

 
Model 2: Y1t = β0 + β1 xMoMECS t + β2 xPMEnInt t + εt 

 

Model 3: Y1t = β0 + β1 xMoMECS t + β3 xUConsS t + εt 

 

Model 4: Y1t = β0 + β1 xMoMECS t + β4 xCO2Steel t + εt 

 

Y2t is Price-Earnings ratio of Cement sector at time t, 

xMoMECCem t is MoM Seasonally Adjusted Electricity Consumption of Cement sector at time t;  

xNMMEnInt t is the Energy intensity of Non-Metal Mineral sector (koe/EURO 2015) at time t;  

xUConsC t is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time t. 

xCO2Cem t is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time t. 

 

Model 5: Y2t = β0 + β1 xMoMECCem t + εt 

 
Model 6: Y2t = β0 + β1 xMoMECCem t + β2 xNMMEnInt t + εt 

 

Model 7: Y2t = β0 + β1 xMoMECCem t + β3 xUConsC t + εt 

 

Model 8: Y2t = β0 + β1 xMoMECCem t + β4 xCO2Cem t + εt 

 

Y3t is Price-Earnings ratio of Chemicals sector at time t,  

XMoMECChem t is MoM Seasonally Adjusted Electricity Consumption of Chemicals sector at time t;  

xChemEnInt t is the Energy intensity of Chemicals sector (koe/EUR2015) at time t;  
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xCO2Chem t is the Intensity of CO2 emissions of Chemicals sector (kCO2/EUR2015) at time t. 

 
Model 9: Y3t = β0 + β1 xMoMECChem t + εt 

 
Model 10: Y3t = β0 + β1 xMoMECChem t + β2 xChemEnInt t + εt 

 
Model 11: Y3t = β0 + β1 xMoMECChem t + β4 xCO2Chem t + εt 

 

 
The table describes the results of the OLS regressions performed on the following variables: the Price-Earnings ratio of Metals 
sector (the dependent variable in models 1, 2, 3, 4), the price-earnings ratio of the Cement sector (the dependent variable in 
models 5, 6, 7, 8), the price-earnings ratio of the Chemicals sector (the dependent variable in models 9, 10, 11), the month-
over-month change of the electricity consumption of the Steel, Cement and Chemicals sectors (Electricity Consumption) the 
value-added energy intensity of the Primary Metals, Non-Metal Mineral and Chemicals sectors (Energy Intensity value-added), 
the physical energy intensity of the Steel sector and the physical electricity intensity of Cement sector (Energy Intensity), the 
physical CO2 emissions intensity of the Steel sector and the value-added CO2 emissions intensity of Chemicals sector (CO2 
Intensity). Sample period: Feb 2010 – Dec 2018. 

 

 
 

The table above shows that the electricity consumption and the energy efficiency measures of the 

Metals sector are again highly significant in explaining the tested financial ratio because of the 

outstandingly energy-intensive production process. However, the percentage of the explained 

variation of the P/E is not high (max 13%). It is the lowest (4,6%) when the electricity consumption 

variable is used alone, and this is exactly the way the final MoM model will look like. The electricity 

consumption variable and the energy efficiency measures relative to the Metals sector feature a 

positive sign (the opposite of what is usually expected if the P/E is the dependent variable). The 

correlation matrix in Appendix B shows that B/M and P/E for this sector are highly positively 

correlated (0,74) which may be due to the exploitation of the scale of production and, hence, the 

abnormal growth in earnings which surpasses the increase in market value of the sector. Then, the 

impact of the EC and the energy efficiency measures on the P/E is reversed. Considering the 

acceptable correlation between the P/E and the MoM electricity consumption, it would be prudent to 

include the P/E in the final regression for the explanation of the Basic Resources stock returns. 

However, given the correlation between B/M and P/E of this sector, they should be used in the sector 

regressions one at a time. 



81 
 

 

The cumulative regression results table above shows that the MoM electricity consumption of the 

Cement sector, corrected (or not) by the energy efficiency measures, does not explain the sector 

price-earnings ratio. None of the sector energy efficiency measures is significant at any acceptable 

level. As it was said before, this could be because of the low energy efficiency of this industrial sector 

and because the market could be guided by other information rather than the electricity consumption 

when it values the health of the industrial sector. Then, the energy and CO2 emissions intensities 

convey little information to the market about the real productivity of this sector. The inclusion of the 

sector P/E ratio in the final model explaining the Construction & Materials stock return could improve 

the regression results. 

 

Similar situation to that of the Metals sector is observed for the Chemicals sector. Again, the models 

including electricity consumption variable adjusted for energy efficiency are highly significant in 

explaining the sector P/E ratio meaning that the market values correctly the productive reality and 

potential of this industrial sector. Still the percentage of P/E variation explained by the models is not 

high (min 0% with only EC and max 10,9% with CO2 intensity). Besides, considering that the final 

MoM model for this sector will not include any of the listed energy efficiency measures, also for the 

Chemicals sector the P/E ratio would be included in the final MoM regression explaining the stock 

returns of the Chemicals sector. 

 
 

2.3.2.2. Year-over-year data: 
 

Table 26: Regression of Price-earnings ratios of All-Metals, Cement and Chemicals 
sectors against YoY electricity consumption of the associated industrial sectors and 

sector energy efficiency measures. 
 

The regressors and the models tested: 

 
Y1t is Price-Earnings ratio of All-Metals sector at time t,  

XYoYECS t is YoY Electricity Consumption of Steel sector at time t;  

xPMEnInt t is the Energy intensity of Primary Metals sector (koe/EURO 2015) at time t; 

xUConsS t is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time t; 

xCO2Steel t is the Intensity of CO2 emissions of Steel sector (tCO2/t) at time t. 

 

Model 1: Y1t = β0 + β1 xYoYECS t + εt 

 
Model 2: Y1t = β0 + β1 xYoYECS t + β2 xPMEnInt t + εt 

 

Model 3: Y1t = β0 + β1 xYoYECS t + β3 xUConsS t + εt 

 
Model 4: Y1t = β0 + β1 xYoYECS t + β4 xCO2Steel t + εt 
 

Y2t is Price-Earnings ratio of Cement sector at time t,  

xYoYEC t is YoY Electricity Consumption of Cement sector at time t;  

xNMMEnInt t is the Energy intensity of Non-Metal Mineral sector (koe/EURO 2015) at time t;  

xUConsCem t is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time t; 

xCO2Cem t is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time t. 

 

Model 5: Y2t = β0 + β1 xYoYECCem t + εt 
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Model 6: Y2t = β0 + β1 xYoYECCem t + β2 xNMMEnInt t + εt 

 
Model 7: Y2t = β0 + β1 xYoYECCem t + β3 xUConsCem t + εt 

 

Model 8: Y2t = β0 + β1 xYoYECCem t + β4 xCO2Cem t + εt 
 

Y3t is Price-Earnings ratio of Chemicals sector at time t,  

xYoYEC t is YoY Electricity Consumption of Chemicals sector at time t;  

xChemEnInt t is the Energy intensity of Chemicals sector (koe/EURO 2015) at time t;  

xCO2Chem t is the Intensity of CO2 emissions of Chemicals sector (kCO2/EUR2015) at time t. 

 

Model 9: Y3t = β0 + β1 xYoYECChem t + εt 

 
Model 10: Y3t = β0 + β1 xYoYECChem t + β2 xChemEnInt t + εt 

 
Model 11: Y3t = β0 + β1 xYoYECChem t + β4 xCO2Chem t + εt 

 

 
The table describes the results of the OLS regressions performed on the following variables: the Price-Earnings ratio of Metals 
sector (the dependent variable in models 1, 2, 3, 4), the price-earnings ratio of the Cement sector (the dependent variable in 
models 5, 6, 7, 8), the price-earnings ratio of the Chemicals sector (the dependent variable in models 9, 10, 11), the year-over-
year change of the electricity consumption of the Steel, Cement and Chemicals sectors (Electricity Consumption) the value-
added energy intensity of the Primary Metals, Non-Metal Mineral and Chemicals sectors (Energy Intensity value-added), the 
physical energy intensity of the Steel sector and the physical electricity intensity of Cement sector (Energy Intensity), the physical 
CO2 emissions intensity of the Steel sector and the value-added CO2 emissions intensity of Chemicals sector (CO2 Intensity). 
Sample period: Jan 2011 – Dec 2018. 

 
The table above shows an opposite situation with respect to the same tests performed on the B/M 

ratio. Here all the YoY electricity consumption variables are highly significant in explaining the 

variation in sector P/E ratios. Here the market correctly relates the growth in earnings in Metals and 

Chemicals sectors to their market valuation (the negative sign is consistent with the logic of the 

model setting). The Cement sector presents once again an anomaly which can be explained by the 

high growth in earnings of the sector due to the year-over-year change in electricity consumption 

and slow market adjustment to this news. So, here a market mispricing takes place. 

 

The energy efficiency measures are highly significant only for the Metals sector (the CO2 emissions 

intensity is weakly significant in the regression for the Cement sector). Their signs of the coefficients 

are again positive, confirming the presence of an anomaly. Probably, the sign is due to a very high 

growth in earnings which is, however, linked more to the growth in energy efficiency and not in 
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production volumes. For the Cement sector the increase in electricity consumption, and the 

consequent increase in the intensity of CO2 emissions, brought to higher volumes of production 

which influenced a high growth in earnings which resulted higher than the market adjustment of the 

stock price. Therefore, the relative coefficients resulted positive which is not consistent with the 

model setting.  The general lack of significance of the energy efficiency measures is compensated 

by the high significance of the electricity consumption which incorporates all the information at the 

basis of the construction of P/E ratios. 

 

It is possible to observe from the regression results that the YoY electricity consumption of the Metals 

sector corrected by the physical energy intensity explains 11,6% of the variability of the P/E of the 

Metals sector; the YoY electricity consumption of the Cement sector corrected by the sector value-

added energy intensity explains 15,2% of the variability of the sector P/E; the YoY electricity 

consumption of the Chemicals sector alone explains 26,3% of the changes in sector P/E. 

 

Then, giving the limited explanatory power over the P/E, correlations permitting, it would be 

reasonable to include the sector P/E ratio in the final YoY regressions of Basic Resources and 

Construction & Materials sectors. It will not be used in the final regression of the Chemicals sector 

because the P/E is highly correlated with the electricity consumption variable of this sector. 
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2.4. Regressions  
 
What follows is the regression analysis performed on the electricity consumption, energy efficiency 

measures, the forward energy price change, the carbon price change, and financial ratios (book-to-

market, B/M, and price-earnings, P/E), the dependent variable being the month-over-month or the 

year-over-year change in industrial sector stock returns corrected for inflation. 

 

The energy efficiency measures are expected to add statistical significance to the regressions quite 

unevenly across the industrial sectors. The reasons for this intuition are multiple (Lapillonne, 2016): 

and are not captured by the simplified fixed coefficient model for return developed in Section 2:the 

energy consumption of some firms could depend more on the fact that some large equipment does 

not work at full capacity and, therefore, is used less efficiently, or that a part of energy consumption 

is linked to non-technical changes (the decision to shift the production to other items which require 

less/more energy consumption during the production process; or a massive closure of obsolete and 

less efficient production facilities). Both these issues are not accommodated in a Leontief technology. 

 

It is also expected that if the energy-based model correctly represents results, the financial ratios 

would lose their predictive power over the stock returns when the electricity consumption and energy 

efficiency variables are included in the analysis. This could happen if the theoretical setting of this 

research is true to life and the electricity consumption passes through the productivity in its influence 

on stock returns. And as soon as the financial ratios are based on the market valuation of the firm’s 

performance, it is plausible that the market builds its opinion on the expectation of future productivity 

of the firm. So, the channel of productivity works for both the electricity consumption and the financial 

ratios, but the former variable enters the chain before, on the business level. 

 

The following tests will show if these intuitions are correct. 

 

 

2.4.1. Month-over-month data 
 
The financial operators, like portfolio managers and investors, are interested in predicting the 

immediate stock price changes (stock returns). The most informative are the price variations relative 

to the previous month which reflect the changes in firm’s productivity due to the alteration of the 

quantity of productive inputs and firm’s productive decisions. That is why the tests with the month-

over-month data are due. 

 

The analysis is divided in three steps: first, the single-factor models with the lags of the electricity 

consumption variable are regressed to choose the best performing lag to be used in further analysis. 

Then the reduced versions of the regressions are performed (only with energy efficiency measures) 
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to choose one energy efficiency measure, if any, to be used in further tests. The measures are highly 

correlated between themselves, so the contemporaneous use of all three of them in a regression 

would give rise to the multicollinearity issue. Then, after having chosen the energy efficiency 

measure to be used (or having decided not to use any of them), the forward energy price change 

variable and the carbon permits’ price change variable are added to the regressions. 

 

Since the production cycle length differs between the industrial sectors and the business cycle data 

on Italian industrial sectors is issued with a few months of delay, for each of the energy-intensive 

industrial sectors (Basic Resources, Construction & Materials, Chemicals) 6 models with the sector 

electricity consumption lagged variable (lags going from 1 to 6 months) are regressed with the OLS 

procedure. In this manner the first statistically significant lag is identified. The chosen lag is used as 

a reference time point for the calculation of the lags of other regressors (energy efficiency measures 

etc.) that will adjust the impact of the electricity consumption variable in final regressions. 

 
For the Basic Resources sector the chosen lag of the electricity consumption variable is the six-

months lag (Table 33 in Appendix C), for the Construction & Materials sector – the three-months 

lag (Table 35 in Appendix C), for the Chemicals sector – the one-month lag (Table 36 in Appendix 

C). 

 

The month-over-month change in the electricity consumption of Nonferrous Metals sector, which 

was also provided by Terna, is not at all statistically significant in explaining the variation of the MoM 

Basic Resources price index (see Table 34 in Appendix C) and worsens the performance of the EC 

Steel lags. So, the electric energy consumption of NF Metals sector was dropped from the further 

analysis. 

 

Then the lagged electricity consumption variables are used in multiple regressions with energy 

efficiency measures lagged by the same number of months as the relative sector electricity 

consumption. 

 

As it can be seen from the correlation matrices in Appendix B, the sector energy efficiency measures 

are always highly correlated between themselves, so it is reasonable to use only one (energy or 

CO2) intensity at a time in the regressions. 

 

Table 37: OLS Regressions: MoM Stock Returns of Basic Resources, Construction 
& Materials and Chemicals sectors against the MoM Electricity of Steel, Cement 

and Chemicals sectors and energy efficiency measures. 
 
 

Y1t is MoM Basic Resources Stock Return at time t,  

xMoMECS(t-6) is MoM Seasonally Adjusted Electricity Consumption of Steel sector at time (t-6);  
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xPMEnInt(t-6) is the Energy intensity of Basic Metals sector (koe/EURO 2015) at time (t-6);  

xUConsS(t-6) is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time (t-6); 

xCO2Steel(t-6) is the Intensity of CO2 emissions of Steel sector (tCO2/t) at time (t-6). 

 
Model 1: Yt = β0 + β1 xMoMECS(t-6) + εt 

 
Model 2: Yt = β0 + β1 xMoMECS(t-6) + β2 xPMEnInt(t-6) + εt 

 
Model 3: Yt = β0 + β1 xMoMECS(t-6) + β3 xUConsS(t-6) + εt 

 

Model 4: Yt = β0 + β1 xMoMECS(t-6) + β4 xCO2Steel(t-6) + εt 

 

Y2t is MoM Construction & Materials Stock Return at time t,  

xMoMECCem(t-3) is MoM Seasonally Adjusted Electricity Consumption of Cement sector at time (t-3);  

xNMNEnInt(t-3) is the Energy intensity of Non-Metal Mineral sector (koe/EURO 2015) at time (t-3); 

xUConsC(t-3) is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time (t-3); 

xCO2Cement(t-3) is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time (t-3). 

 
Firstly, the regressions with energy efficiency measures are performed. 
 
Model 5: Yt = β0 + β1 xMoMECCem(t-3) + εt 

 
Model 6: Yt = β0 + β1 xMoMECCem(t-3) + β2 xNMMEnInt(t-3) + εt 

 
Model 7: Yt = β0 + β1 xMoMECCem(t-3) + β3 xUConsC(t-3) + εt 

 

Model 8 : Yt = β0 + β1 xMoMECCem(t-3) + β4 xCO2Cement(t-3) + εt 

 

 
Y3t is MoM Chemicals Stock Return at time t, 

xMoMECChem(t-1) is MoM Seasonally Adjusted Electricity Consumption of Chemical sector at time (t-1);  

xChemEnInt(t-1) is the Energy intensity of Chemicals sector (koe/EURO 2015) at time (t-1);  

xCO2Chem(t-1) is the Intensity of CO2 emissions of Chemicals sector (kCO2/EURO 2015) at time (t-1). 

 
Model 9: Yt = β0 + β1 xMoMECChem(t-1) + εt 

 
Model 10: Yt = β0 + β1 xMoMECChem(t-1) + β2 xChemEnInt(t-1)+ εt 

 
Model 11: Yt = β0 + β1 xMoMECChem(t-1) + β4 xCO2Chem(t-1) + εt 

 

 

 

 
The table describes the results of the OLS regressions performed on the following variables: the month-over-month Basic 
Resources stock return corrected for inflation, the month-over-month Construction & Materials stock return corrected for 
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inflation, the month-over-month Chemicals stock return corrected for inflation; the month-over-month electricity consumption of 
Steel sector lagged by six months, the month-over-month electricity consumption of Cement sector lagged by three months, the 
month-over-month electricity consumption of Chemicals sector lagged by one month, and the energy efficiency measures (the 
value-added energy intensity of Primary Metals sector lagged by six months, the physical energy intensity of Steel sector lagged 
by six months, the physical CO2 emissions intensity of Steel sector lagged by six months, the value-added energy intensity of 
Non-metal Minerals sector lagged by three months, the physical electricity intensity of Cement sector lagged by three months, 
the physical CO2 emissions intensity of Cement sector lagged by three months, the value-added energy intensity of Chemicals 
sector lagged by one month, the value-added CO2 emissions intensity of Chemicals sector lagged by one month. Sample 
period: Feb 2010 – Dec 2019. 
 

 

The table above, first, confirms the base of the theoretic model elaborated in this research and, 

hence, shows the predictor power of the industrial electricity consumption over the industrial sector 

stock returns (by impacting the productivity). The sector month-over-month electricity consumption 

variable, appropriately lagged, is always statistically significant if used alone (models 1, 5, 9). The 

sign (positive) of the coefficient of the EC variable for Basic Resources and Construction & Materials 

sectors is consistent with the model setting while the sign (negative) of the EC Chemicals is not. The 

Chemicals sector is the most performing from the point of view of energy efficiency (see Figure 7). 

Besides, it is the second sector in Italy for the consumption of electric energy and the most sensitive 

sector to the price of electricity because it is largely exposed to the international competition. This 

means that the sector transforms quickly in response to the changes in energy price. These changes 

may be structural (internal articulation of production process, changes in line of production) or from 

the point of view of energy intensity20. Therefore, the negative sign of the regression coefficient 

means that the speed of improvement of the Chemicals’ energy efficiency is so fast that it reverses 

the sign of the impact of the electricity consumption on productivity (so even if the electricity 

consumption is reduced, the productivity remains at the same level or may even increase a little). 

On the other hand, the negative sign could mean a fast structural transformation of the production 

line in response to some external shocks. 

 

The tested theoretical model also adds the presence of the incentives for the firms to further increase 

their energetic efficiency because it will help them to increase productivity. Then the energy efficiency 

measures enter the explanation. 

 

Neither efficiency measure is statistically significant at any acceptable level in the regressions from 

(2) to (4) for the Basic Resources sector. The Steel sector being highly energy efficient and being 

the top consumer of electric energy in Italy, its electricity consumption variable already incorporates 

all the information useful for the prediction of the relative stock returns. The correcting function of the 

energy efficiency measures is needless here. Therefore, neither energy efficiency measure could be 

considered for further analysis of this sector. 

 

The Construction & Materials sector is not at all energy efficient (see Figure 7), then, the energy 

 
20 http://federchimica.it/dati-e-analisi/conoscere-l’industria-chimica  

http://federchimica.it/dati-e-analisi/conoscere-l’industria-chimica
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efficiency measures should exercise their correcting impact on the sector electricity consumption. In 

fact, the physical energy intensity and the CO2 emissions intensity are both significant with positive 

coefficients (confirming the correcting effect according to the model setting). The physical energy 

intensity performs slightly better; hence, it will be used in further analysis of this industrial sector. 

 

The same situation as for the Basic Resources sector, is observed for the Chemicals sector: the 

energy efficiency measures are not statistically significant in the regressions because the electricity 

consumption already includes all the information useful for the prediction of the sector stock returns. 

 

However, the performance of the energy efficiency measures in the month-over-month regressions 

should be considered permitting a certain degree of bias because the monthly series of the 

intensities were artificially generated out of annual data. It is also no wonder to find the significance 

of these energy efficiency measures at the monthly level rather low if not completely absent. 

Following this logic, the year-over-year tests should produce more prominent inference results. The 

next subsection will prove or reject this hypothesis. 

 

But before moving to the tests on year-over-year, the second step of the analysis of the month-over-

month data is due. It consists in integrating the regression analysis with the forward electricity price 

change and the carbon permits’ price change. The lags of those variables are chosen in such a way 

as to produce the best inference results (see Tables 38, 39, 40, 41, 42 and 43 in Appendix C). 

Then, the multiple-factor regressions are run. 

 
 

Table 44: OLS Regressions: MoM Stock Returns of Basic Resources, Construction 
& Materials and Chemicals sectors against the MoM Electricity of Steel, Cement 

and Chemicals sectors, energy efficiency measures, forward energy price change 
and carbon permits’ price change. 

 
Y1t is MoM Basic Resources Stock Return at time t, 

xMoMECS(t-6) is MoM Seasonally Adjusted Electricity Consumption of Steel sector at time (t-6);  

xMoMEP(t-5) is the MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-5); 

xMoMPCO2(t-3) is MoM Seasonally Adjusted Carbon Permits’ Price variation at time (t-3). 

 
Model 12: Y1t = β0 + β1 xMoMECS(t-6) + β4 xMoMEP(t-5) + β6 xMoMPCO2(t-3) + εt 
 

Y2t is MoM Construction & Materials Stock Return at time t, 

xMoMECCem(t-3) is MoM Seasonally Adjusted Electricity Consumption of Cement sector at time (t-3);  

xUConsC(t-3) is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time (t-3); 

xMoMEP(t-4) is the MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-4); 

xMoMPCO2(t-1) is MoM Seasonally Adjusted Carbon Permits’ Price variation at time (t-1). 
 
Model 13: Y2t = β0 + β1 xMoMECCem(t-3)+ β2 xUConsC(t-3) + β3 xMoMEP(t-4) + β5 xMoMPCO2(t-1) + εt 

 

Y3t is MoM Chemicals Stock Return at time t, 

xMoMECChem (t-1) is MoM Seasonally Adjusted Electricity Consumption of Chemical sector at time (t-1);  

xMoMEP(t-5) is the MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-5); 

xMoMPCO2(t-3) is MoM Seasonally Adjusted Carbon Permits’ Price variation at time (t-3). 
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Model 14: Y3t = β0 + β1 xMoMECChem (t-1) + β4 xMoMEP(t-5) + β6 xMoMPCO2(t-3) + εt 

 

 
The table describes the results of the OLS regressions performed on the following variables: the month-over-month stock return 

of the Basic Resources sector corrected for inflation, : the month-over-month stock return of the Construction & Materials sector 

corrected for inflation, the month-over-month stock return of the Chemicals sector corrected for inflation, the month-over-month 

change of the electricity consumption of the Steel sector lagged by six months, the month-over-month change of the electricity 

consumption of the Cement sector lagged by three months, the month-over-month change of the electricity consumption of the 

Chemicals sector lagged by one month, , the physical electricity intensity of the Cement sector lagged by three months, the 

month-over-month forward energy price change lagged by five months, the month-over-month forward energy price change 

lagged by four months, the month-over-month carbon permits’ price change lagged by three months, , the month-over-month 

carbon permits’ price change lagged by one month . The Sample period: Feb 2010 – May 2020. 

 
 

Judging by the results in the table above and in Table 37, the month-over-month change in electricity 

consumption is confirmed to be an important predictor of industrial sector stock returns.  

 

The EC of the Steel sector explains up to 14% of the variation in stock returns of the Basic Resources 

sector, and it incorporates all the information on energy efficiency of this sector: neither energy 

efficiency measure is statistically significant in the regressions. Besides, neither the forward energy 

price nor the carbon permits’ price are statistically significant in this model. The boosters of the 

improvement of energy efficiency do not work for this sector. This can be explained as follows: this 

industrial sector is highly energy efficient with extremely energy intensive production with high 

volumes of output, thus, the increase in scale of production compensates the increase in production 

costs caused by the increase in forward energy price. The price of carbon permits has no impact 

meaning that this sector receives enough carbon permits to cover its CO2 emissions.  
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The EC of the Cement sector explains 11% of the variation in stock returns of the Construction & 

Materials sector with the assistance of one of the direct energy efficiency measures, namely the 

electricity intensity (the regression analysis with the CO2 intensity of this sector produces slightly 

worse results, see Table 45 in Appendix C), and one of the boosters of energy efficiency, the forward 

energy price change. Their statistical significance in the model is justified by the fact that this 

industrial sector is not very efficient from the energetic point of view and not big enough to 

compensate the increase in production costs (the increase in forward energy price) by the increase 

of the volumes of production. The carbon permits’ price change is not significant in the model 

meaning that this sector receives enough green certificates to cover its CO2 emissions and does not 

need to buy more of them because they are not sufficient. 

 

Just like for the other two sectors, also the model of the Chemicals sector explains a significant share 

(up to 9%) of the variation of the relative stock returns. The electricity consumption is statistically 

significant and presents a negative sign (due to the increasing high energy efficiency of the sector). 

Both price change variables are statistically significant in the model. In particular, the carbon permits’ 

price change is significant and has a positive coefficient (not consistent with the theory). Differently 

from the forward energy price, this variable indicates the carbon price not only referred to the future 

but also referred to the present moment. And as far as the energy efficiency of the Chemicals sector 

grows at a very high rate, it mitigates the negative impact of the increase of the price of carbon 

permits (the decrease in the MoM change of carbon prices) on the productivity of the firms. 

Therefore, the stock price is still high, and the stock return is still low. Hence, the positive regression 

coefficient is logical to expect. The reduction in the MoM change in forward energy price (negative 

coefficient for the Chemicals and the Construction & Materials sectors) equal to the increase in the 

level of the forward energy price, though, boosters the improvement of energy efficiency of the sector 

because it impacts negatively the productivity, the stock price goes down and the stock returns go 

up. 

 

In short, it is possible to conclude that that the month-over-month change in electricity consumption 

corrected, if needed, by energy efficiency measures and accompanied by the variables serving 

occasionally as boosters of improvement of energy efficiency, explains industrial sectors’ stock 

returns. 

 

2.4.2. Year-over-year data 

  
Following the work by Zhi Da et al. (2017): regressions with year-over-year (YoY) sector price indices 

as the dependent variables and year-over-year sector electricity consumption as the explanatory 

variables were performed on three energy-intensive Italian industrial sectors (Basic Resources, 
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Construction & Materials, Chemicals) using the variables justified by the theoretical model of 

equation (50) elaborated in the previous section. The analysis is divided in two steps: first, the 

regressions with only energy efficiency measures are tested and one, if any, energy efficiency 

measure chosen to be used in further tests. Once again, the contemporaneous use of the energy 

efficiency measures is impossible due to the high correlation between them. After that the forward 

energy price change variable and the carbon permits’ price change variables are added to the 

regression and the second test is performed. 

 

Basic Resources and Chemicals sectors greatly improved their energy efficiency (see Figure 7) in 

the recent ten years while their energy consumption did not move significantly (see Figure 16). In 

turn the Construction & Materials sector (“Non-Metallic Minerals” in the figures) did not show any 

significant improvements of the energy efficiency while the energy consumption got reduced in a 

more pronounced manner. Still, the speed of this change is not high enough to see the year-over-

year difference lagged only by one month. Several lags were tested (see Table 46 in Appendix C) 

and the most significant one (a four-months lag) was chosen for further analysis.  

 

Table 47: OLS Regressions: YoY Stock Returns of Basic Resources, Construction 
& Materials and Chemicals sectors against the YoY Electricity of Steel, Cement and 

Chemicals sectors and energy efficiency measures. 
 
 

Y1t is YoY Basic Resources Stock Return at time t,  

XYoYECS(t-1) is YoY Electricity Consumption of Steel sector at time (t-1);  

xPMEnInt(t-1) is the Energy intensity of Basic Metals sector (koe/EURO 2015) at time (t-1);  

xUConsS(t-1) is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time (t-1); 

xCO2Steel(t-1) is the Intensity of CO2 emissions of Steel sector (tCO2/t) at time (t-1). 

 
Model 1: Yt = β0 + β1 xYoYECS(t-1) + εt 

 
Model 2: Yt = β0 + β1 xYoYECS(t-1) + β2 xPMEnInt(t-1) + εt 

 
Model 3: Yt = β0 + β1 xYoYECS(t-1) + β3 xUConsS(t-1) + εt 

 

Model 4: Yt = β0 + β1 xYoYECS(t-1) + β4 xCO2Steel(t-1) + εt 

 

Y2t is YoY Construction & Materials Stock Return at time t,  

xYoYECCem(t-4) is YoY Electricity Consumption of Cement sector at time (t-4);  

xNMNEnInt(t-4) is the Energy intensity of Non-Metal Mineral sector (koe/EURO 2015) at time (t-4); 

xUConsC(t-4) is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time (t-4); 

xCO2Cement(t-4) is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time (t-4). 

 
 
Model 5: Yt = β0 + β1 xYoYECCem(t-4) + εt 

 
Model 6: Yt = β0 + β1 xYoYECCem(t-4) + β2 xNMMEnInt(t-4) + εt 

 
Model 7: Yt = β0 + β1 xYoYECCem(t-4) + β3 xUConsC(t-4) + εt 

 

Model 8 : Yt = β0 + β1 xYoYECCem(t-4) + β4 xCO2Cement(t-4) + εt 

 

 
Y3t is YoY Chemicals Stock Return at time t, 

xYoYECChem(t-1) is YoY Electricity Consumption of Chemical sector at time (t-1);  

xChemEnInt(t-1) is the Energy intensity of Chemicals sector (koe/EURO 2015) at time (t-1);  

xCO2Chem(t-1) is the Intensity of CO2 emissions of Chemicals sector (kCO2/EURO 2015) at time (t-1). 
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Model 9: Yt = β0 + β1 xYoYECChem(t-1) + εt 

 
Model 10: Yt = β0 + β1 xYoYECChem(t-1) + β2 xChemEnInt(t-1)+ εt 

 
Model 11: Yt = β0 + β1 xYoYECChem(t-1) + β4 xCO2Chem(t-1) + εt 

 

 
The table describes the results of the OLS regressions performed on the following variables: the year-over-year Basic 
Resources stock return corrected for inflation, the year-over-year Construction & Materials stock return corrected for inflation, 
the year-over-year Chemicals stock return corrected for inflation; the year-over-year electricity consumption of Steel sector 
lagged by one month, the year-over-year electricity consumption of Cement sector lagged by four months, the year-over-year 
electricity consumption of Chemicals sector lagged by one month, and the energy efficiency measures: the value-added energy 
intensity of Primary Metals sector lagged by one month, the physical energy intensity of Steel sector lagged by one month, the 
physical CO2 emissions intensity of Steel sector lagged by one month, the value-added energy intensity of Non-metal Minerals 
sector lagged by four months, the physical electricity intensity of Cement sector lagged by four months, the physical CO2 
emissions intensity of Cement sector lagged by four months, the value-added energy intensity of Chemicals sector lagged by 
one month, the value-added CO2 emissions intensity of Chemicals lagged by one month. Sample period: Feb 2011 – May 
2020. 

 
 
The table above shows a different situation with respect to the same table for the month-over-month 

data: the electricity consumption variable is not always statistically significant in explaining the 

industrial sector stock returns. In single-factor regressions it is significant only for the Basic 

Resources sector which is consistent with the available information: also, the year-over-year growth 

in electricity consumption is significant for the most energy-intensive industrial sector in Italy. 

Besides, the energy efficiency measures (which feature positive coefficients consistent with the 

theory) confirm the impact of the electricity consumption variable on the sector stock returns. If the 

physical energy intensity is added to the regression, the adjusted coefficient of determination is 

17,4% (slightly higher than for the model with the CO2 intensity: 16,9%). Also, this measure was 

significant at 20% (but with the “wrong” sign) in the month-over-month regression. Therefore, this 

intensity is kept for further analysis. 

 

The models relative to the Construction & Materials sector present a more realistic situation given 

that it is almost the least efficient industrial sector in Italy from the energetic point of view (the least 
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being the Machinery sector, see Figure 7): the regression coefficient of the electricity consumption 

variable is negative meaning that the increase in the electricity usage does not lead to the increase 

in the output and productivity which remain the same or may even decrease a little. This happens 

when the firms do not invest in a more efficient equipment which gradually becomes more and more 

obsolete. This process is not fast, that is why the numbers show its effects only when the year-over-

year comparison is done. 

 

The electricity consumption of the Chemicals sector is significant, if combined with one of the energy 

efficiency measures, and presents the “correct” sign of the coefficient (positive) consistent with the 

theory. In the test of the month-over-month data the same variable featured a negative sign. This 

means that the abnormal situation due to very high energy efficiency values of this sector (lower 

electricity usage to produce the same, or even slightly higher, output) is visible only with high 

frequency statistics while the year-over-year change shows a more “normal” situation consistent with 

the theory of this study. 

 

One of the important differences between the year-over-year and the month-over-month data is that 

while the second type shows the current immediate changes in the statistics, the first type also shows 

some fluctuations which are more visible in the long run. This concerns, for example, sales and 

earnings. Then it is not surprising that the value-added energy and CO2 emissions intensities may 

play a more important role in these tests. For example, the value-added energy intensity of the 

Cement sector is highly significant and presents the consistent sign (positive), and hence, corrects 

the impact of the sector electricity consumption change on the Construction & Materials stock returns 

(the EC variable becomes significant). This could be because firms of the sector rise the price of 

their products or make structural changes and start producing products for the high value segment. 

However, the sign of the EC regression coefficient is negative (not consistent). This means that at 

year-over-year level the overall (low and stagnant) energy efficiency of the Construction & Materials 

sector is more visible, and higher electricity usage cannot improve the productivity but only makes it 

remain stable which is valued negatively by the market which reduces the stock price and increases 

the requested stock return. 

 

Therefore, the value-added energy intensity is used in further tests for the Construction & Materials 

sector. Besides, both value-added intensities are highly significant for the Chemicals sector but only 

the CO2 intensity makes the year-over-year electricity consumption of the Chemicals sector 

significant in explaining the sector stock returns. The regression coefficient of the latter energy 

efficiency measure is negative which is counterintuitive at first glance with respect to the theoretical 

setting. However, as it was already mentioned for the month-over-month tests, the Chemicals sector 

is extraordinarily energy efficient. Therefore, the increase in CO2 emissions (or the energy 
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consumption) per value of production measured in 1 Euro of 2015 cannot impact the energy 

efficiency in a sufficient way to lead to the reduction of productivity. The energy efficiency grows 

extremely fasts and brings the productivity to the level expected after the increase in energy input. 

Thus, the regression coefficient of the value-added CO2 intensity is negative instead of positive. 

 

What follows is the regression analysis of the sector stock returns (Basic Resources, Construction 

& Materials, Chemicals) vs year-over-year electricity consumption of the Steel, the Cement and the 

Chemicals sectors with the chosen energy efficiency measures, the forward energy price change 

and the carbon permits’ price change. For the Basic Resources sector only the YoY forward energy 

price change was used because the YoY carbon price change is highly correlated with the YoY 

electricity consumption of the Steel sector (see Appendix B for the relative correlation matrices). For 

the same reason for the Chemicals sector only the YoY carbon price change was used in the 

regression – the YoY forward energy price is highly corelated with the YoY electricity consumption 

of the Chemicals sector. 

 

 

Table 48: OLS Regressions: YoY Stock Returns of Basic Resources, Construction 
& Materials and Chemicals sectors against the YoY Electricity of Steel, Cement and 

Chemicals sectors with chosen energy efficiency measures, YoY forward energy 
price change, YoY carbon permits’ price change. 

 
Y1t is YoY Basic Resources Stock Return at time t, 

xYoYECS(t-1) is YoY Electricity Consumption of Steel sector at time (t-1);  

xUConsS(t-1) is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time (t-1); 

xYoYEP(t-1) is the YoY Forward Energy Price variation at the MTE market at time (t-1); 

 

 
Model 12: Yt = β0 + β1 xYoYECS(t-1) + β3 xUConsS(t-1) + β5 xYoYEP(t-1) + εt 
 

 
Y2t is YoY Construction & Materials Stock Return at time t, 

xYoYECCem(t-4) is YoY Electricity Consumption of Cement sector at time (t-4);  

xNMMEnInt(t-4) is the Energy intensity of Non-Metal Mineral sector (koe/EURO 2015) at time (t-4); 

xYoYEP(t-1) is the YoY Forward Energy Price variation at the MTE market at time (t-1). 

xYoYPCO2(t-1) is YoY Carbon Permits’ Price variation at time (t-1). 

 
Model 13: Y2t = β0 + β1 xYoYECCem(t-4) + β2 xNMMEnInt(t-4) + β5 xYoYEP(t-1) + β6 xYoYPCO2(t-1) + εt 
 

 
Y3t is YoY Chemicals Stock Return at time t, 

xYoYECChem(t-1) is YoY Electricity Consumption of Chemical sector at time (t-1);  

xCO2Chem(t-1) is the intensity of CO2 emissions of the Chemicals (kCO2/EUR2015) at time (t-1);  

xYoYPCO2(t-1) is YoY Carbon Permits’ Price variation at time (t-1). 

 
 
Model 14: Y3t = β0 + β1 xYoYECChem(t-1) + β4 xCO2Chem(t-1) + β6 xYoYPCO2(t-1) + εt 
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The table describes the results of the OLS regressions performed on the following variables: the year-over-year stock return of 

the Basic Resources sector corrected for inflation, the year-over-year stock return of the Construction & Materials sector 

corrected for inflation, the year-over-year stock return of the Chemicals sector correct for inflation, the year-over-year change 

of the electricity consumption of the Steel sector lagged by one month, the year-over-year change of the electricity consumption 

of the Cement sector lagged by four months, the year-over-year change of the electricity consumption of the Chemical sector 

lagged by one month, the physical energy intensity of Steel sector lagged by one month, the value-added energy intensity of 

the Non-metal Mineral sector lagged by four months, the value-added CO2 intensity of the Chemical sector lagged by one 

month, the year-over-year forward energy price change lagged by one month, the year-over-year carbon permits’ price change 

lagged by one month. The Sample period: Feb 2011 – May 2020. 

 

The table above shows considerably better inference results compared to the previous table which 

did not consider the forward energy price change and the carbon price change and compared to the 

tests on the month-over-month data.  

 

The year-over-year changes in forward energy prices and in carbon prices are always highly 

significant except for the Basic Resources sector. This result is the same as for the MoM regression. 

This means that the Basic Resources is highly energy efficient with big volumes of production, so, 

the increase in the costs provoked by the fluctuations in the prices of energy and carbon is promptly 

mitigated, hence, the productivity remains unchanged. The adjusted R2 remains almost the same 

(18,5%) as in the regression with YoY electricity consumption and the physical energy intensity 

(17,4%): Slightly worse regression results with the CO2 intensity instead of the physical energy 
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intensity can be found in Table 49 in Appendix C. Then, only the electricity consumption and the 

physical energy intensity are kept for the final YoY model of the Basic Resources sector. 

 

As for the Construction & Materials sector, the YoY electricity consumption loses its weak 

significance gained in the regression with the value-added energy intensity, but the model gains a 

lot in terms of the predictor power (24,9% vs 4,7%) and the energy efficiency measure remains still 

highly significant. Construction & Materials is the most problematic sector from the point of view of 

energy efficiency, but it is one of the biggest in terms of output. That is why it is not surprising that 

the year-over-year change in electricity consumption is significant in the regressions only if combined 

with the ratio which translates these numbers in monetary terms for the firm (the energy consumption 

in relation to the production value). Needless to say, the month-over-month change in electricity 

consumption is much more informative in terms of production volumes and the value added and, 

hence, is highly statistically significant in the relative regressions. The value-added energy intensity 

is not significant in the month-over-month regressions relative to the Construction & Materials sector 

precisely because the MoM electricity consumption variable includes already all the information 

which it conveys. The forward energy price change is highly significant and presents the sign 

(negative) which is consistent with the theory. It means that it boosts the energy efficiency of the 

sector by impacting its productivity. The carbon price change, though, while being highly statistically 

significant, presents the wrong sign (positive). As it was mentioned in the theoretical part of this 

research, this may happen when the industrial sector is big enough to neutralise the increase of the 

costs by upscaling production volumes. When it not only neutralises the negative impact on 

productivity but increases the output more than needed (like in this case), then the sign of the 

coefficient of the carbon price change is reversed. The conclusion is that the YoY electricity 

consumption of the Cement sector corrected by the value-added energy intensity and accompanied 

by the YoY forward energy price change and the YoY carbon price change will be included in the 

final YoY model for the Construction & Materials sector.  

 

The results relative to the YoY regression of Chemicals sector data are quite exceptional. All the 

variables are highly significant. The YoY electricity consumption presents the sign which is consistent 

with the “normal situation” in the theoretical setting of this research, but the month-over-month tests 

showed that the extraordinary energy efficiency of this sector changed the “normal” logics of the 

impacts and, thus, reversed the sign of the regression coefficient of the electricity consumption 

variable. It is possible to suppose that the impact of the energy efficiency measure which is 

statistically significant in YoY regression (the value-added CO2 emissions intensity) was 

incorporated in the electricity consumption variable in the MoM regressions. In fact, in the table 

above it has the opposite sign with respect to the electricity consumption variable meaning that it 

exercises its correcting effect on it. The YoY carbon price change has the same sign (positive) as in 
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the MoM regression which confirms the rapid response of the sector to this information in terms of 

transformation of the production process (either structural or energy intensive). Therefore, all the 

variables of the regression above: the YoY electricity consumption, the value-added CO2 intensity, 

the YoY carbon price change will be included in the final YoY regression for the Chemicals sector. 

 

 

In conclusion, it is possible to say that the wish to replicate the study by Zhi Da (2017) brought out 

unanticipated results if applied to the Italian data. If used in a single-factor regression, the YoY sector 

electric energy variable is rarely significant in explaining the variation in sector stock prices (only if 

applied to the Basic Resources sector) but if it is adjusted by energy efficiency measures and the 

forward energy price change and the carbon price change, the inference results change 

considerably. The coefficient of determination increases visibly, and the electricity consumption 

variable may even become more significant (as for the Chemicals sector). Then, it is possible to 

conclude that in a study of the impact of electricity consumption on stock returns the knowledge of 

the energy efficiency of an energy-intensive industrial sector, combined with the availability of energy 

efficiency measures and the forward energy price series together with the carbon price series, is 

essential. However, the final check with the inclusion of financial ratios is due. 
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2.5. Augmented Models with Financial Variables 
 
Finally, it is necessary to choose the financial ratios to use in the final models for the industrial sectors 

under consideration. For this purpose, it is necessary to combine the results of Section 2.4.1. and 

Section 2.4.2 with the results of Section 2.3. 

 

For the Basic Resources industrial sector, the models that were chosen for the further analysis were 

the following: for the MoM data - the model in Table 37 with only the MoM electricity consumption 

variable (adj. R2 13,7%); for the YoY data - the model in Table 47 with the YoY electricity 

consumption variable and the physical energy intensity (adj. R2 = 17,4%). Then it is necessary to 

decide which financial ratios (B/M or P/E) should be added to the chosen model to complete it. For 

this industrial sector the two financial ratios cannot be used together in the regressions due to the 

high correlation between them (0,74), hence, they are used one at a time. Section 2.3. showed how 

and in which manner the industrial electricity consumption variable alone and corrected by energy 

efficiency measures explained the variations in sector book-to-market and price-earnings ratios. For 

the MoM data the percentage of explained variability of the B/M and the P/E was quite low (3,6% for 

the former and 4,6% for the latter). Therefore, both variables could add some information to the main 

model explaining stock returns, and for this purpose should be retained in the analysis. For the YoY 

data the percentage of explained fluctuations of B/M and P/E was somewhat higher than for the 

MoM tests (13,5% for the B/M and 11,6% for the P/E) but still not significant. Thus, both financial 

ratios should be included in the YoY final regression model of the Basic Resources sector. 

 

For the Construction & Materials industrial sector: for the MoM data – the model in Table 44 with the 

MoM electricity consumption variable, the physical electricity intensity and the forward energy price 

change (adj. R2 = 11,1%); for the YoY data – the model in Table 48 with the YoY electricity 

consumption variable, the value-added energy intensity, the forward energy price change, the carbon 

price change (adj. R2 = 24,9%). As for the decision on the inclusion of the financial ratios: Section 

2.3. showed that B/M and P/E ratios for both MoM and YoY data are not explained by the electricity 

consumption and the energy efficiency measures (for the MoM not explained at all, for the YoY data 

B/M is not explained, P/E is explained at 15,2%), hence, both ratios would be included in the final 

MoM and YoY models of the Construction & Materials sector to see whether they could improve their 

overall performance. 

 

For the Chemicals industrial sector: for the MoM data – the model in Table 44 with the MoM electricity 

consumption variable, the forward energy price change, the carbon price change (adj. R2 = 8,5%); 

for the YoY data – the model in Table 48 with the YoY electricity consumption variable, the intensity 

of CO2 emissions and the carbon price change (adj. R2 = 37,2%). The situation with the financial 

ratios of the Chemicals sector is quite peculiar: while the MoM tests showed that the electricity 
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consumption adjusted by energy efficiency measures could not explain the variability in sector B/M 

and P/E ratios, the YoY tests showed the opposite picture: the B/M market explained by 55,4% by 

the YoY electricity consumption corrected by CO2 intensity and P/E explained by 26,2%. Also, 

considering the high correlations between the CO2 intensity and the B/M ratio (0,73), and the YoY 

electricity consumption variable and the P/E ratio (-0,52), the two financial ratios are dropped from 

further analysis. The electricity consumption and the CO2 intensity already incorporate all the 

information that the financial ratios could contribute to the final YoY model of the Chemicals sector. 

 

Then, it is possible to sum up the conclusion on the use of the financial ratios in the final models in 

the following table: 

 

Table 50: Summary Table of percentages of Adjusted R-Squared of sector Price-

Earnings and Book-to-Market ratios of Basic Resources, Construction & Materials, 

Chemicals sectors explained by the models with period-over-period (MoM and YoY) 

data and energy efficiency measures. 
 
 

 B/M  
Max Adj. R2 

P/E  
Max Adj. R2 

  

Basic 
Resources 

MoM YoY MoM YoY 

3,6% 13,5% 4,6% 11,6% 

 
Use / Not Use 
in final model  

Use Use Use Use 

 

Construction 
& Materials 

MoM YoY MoM YoY 

0% 0,2% 0% 15,2% 

 
Use / Not Use 
in final model 

Use Use Use Use 

 

Chemicals 

MoM YoY MoM YoY 

0% 55,4% 0% 26,2% 

 
Use / Not Use 
in final model 

Use No Use No 

 

 
 

The table describes, based on the value of the maximum adjusted coefficient of determination (Max Adj. R2) 
resulted from the regressions of sector Book-to-Market (B/M) ratio and sector Price-Earnings ratio (P/E) on the 
month-over-month and year-over-year data, which decision is reached  on whether the financial variable is to be 
included (Use) in the final model or not (No). 
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Finally, the sector models personalised according to the judgement of the inclusion of the widely 

used financial variables (price-earnings or book-to-market ratios) were regressed with the usual OLS 

procedure. 

 

2.5.1. Month-over-month data: 
 
 

Table 51: OLS Regressions: MoM Stock Returns of Basic Resources, Construction 
& Materials and Chemicals sectors against the MoM Electricity of Steel, Cement 

and Chemicals sectors, energy efficiency measures, forward energy price change, 
carbon permits’ price change, sector book-to-market and price-earnings ratios. 

 
Y1t is MoM Basic Resources Stock Return at time t, 

xMoMECS(t-6) is MoM Seasonally Adjusted Electricity Consumption of Steel sector at time (t-6);  

xBMI(t-6) is the Book-to-Market ratio of the Metals sector at time (t-6); 

xPEI(t-1) is the Price-Earnings ratio of the Metals sector at time (t-6). 

 

Model 1: Y1t = β0 + β1 xMoMECS(t-6) + β5 xBM(t-6) + εt 

 
Model 2: Y1t = β0 + β1 xMoMECS(t-6) + β6 xPE(t-6) + εt 
 

Y2t is MoM Construction & Materials Stock Return at time t, 

xMoMECCem(t-3) is MoM Seasonally Adjusted Electricity Consumption of Cement sector at time (t-3);  

xUConsC(t-3) is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time (t-3); 

xMoMEP(t-4) is the MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-4); 

xBMI(t-3) is the Book-to-Market ratio of the Cement sector at time (t-3). 

xPEI(t-3) is the Price-Earnings ratio of the Cement sector at time (t-3). 

 

 
Model 3: Y2t = β0 + β1 xMoMECCem(t-3)+ β2 xUConsC(t-3) + β3 xMoMEP(t-4) + β5 xBM(t-3) + β6 xPE(t-3) + εt 

 

Y3t is MoM Chemicals Stock Return at time t, 

xMoMECChem (t-1) is MoM Seasonally Adjusted Electricity Consumption of Chemical sector at time (t-1);  

xMoMEP(t-5) is the MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-5); 

xMoMPCO2(t-3) is MoM Seasonally Adjusted Carbon Permits’ Price variation at time (t-3); 

xBMI(t-1) is the Book-to-Market ratio of the Chemicals sector at time (t-1); 

xPEI(t-1) is the Price-Earnings ratio of the Chemicals sector at time (t-1). 

 

 
Model 4: Y3t = β0 + β1 xMoMECChem (t-1) + β3 xMoMEP(t-5) + β4 xMoMPCO2(t-3) + β5 xBM(t-1)+ β6 xPE(t-1) + εt 
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The table describes the results of the OLS regressions performed on the following variables: the month-over-month stock return 

of the Basic Resources sector corrected for inflation, the month-over-month stock return of the Construction & Materials sector 

corrected for inflation, the month-over-month stock return of the Chemicals sector corrected for inflation, the month-over-month 

change of the electricity consumption of the Steel sector lagged by six months, the month-over-month change of the electricity 

consumption of the Cement sector lagged by three months, the month-over-month change of the electricity consumption of the 

Chemicals sector lagged by one month, the physical electricity intensity of the Cement sector lagged by three months, the 

month-over-month forward energy price change lagged by five months, the month-over-month forward energy price change 

lagged by four months, the month-over-month carbon permits’ price change lagged by three months, the month-over-month 

carbon permits’ price change lagged by one month, the book-to-market ratio of the Metals sector lagged by six months, the 

price-earnings ratio of the Metals sector lagged by six months, the price-earnings ratio of the Cement sector lagged by three 

months, the book-to-market ratio of the Cement sector lagged by three months, the book-to-market ratio of the Chemicals sector 

lagged by one month, the price-earnings ratio of the Chemicals sector lagged by one month. The Sample period: Feb 2010 – 

Dec 2018. 

 
 

The results presented in the table above show that generally the financial ratios do not contribute 

anything to the sector MoM models explaining stock returns. All the useful information that book-to-

market and price-earnings ratios contain is already contained in other variables: the electricity 

consumption, some energy efficiency measures, the forward energy price change and the carbon 

permits’ price change. 

 

It is especially true for the Basic Resources sector. The MoM electricity consumption alone is the 
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only factor which explains the sector stock returns, and any additional regressor only worsens its 

performance (neither model for the Basic Resources sector in the table above is statistically 

significant at any acceptable level, neither regressor is significant). Therefore, the final model for this 

sector is the first single-factor model of Table 37: the six-months lag of the electricity consumption 

(EC) of the Steel sector explains 13,7% of the variation of RRR of the Basic Resources sector. 

 

As for the Construction & Materials sector, the price-earnings ratio of the Cement sector is weakly 

significant in the regression, but it still manages to increase the percentage of variation of the stock 

returns explained by the model. Therefore, the final model for the Construction & Materials sector 

will be as follows: the three-months lag of the EC of the Cement sector corrected by the three-months 

lag of the physical electricity intensity and accompanied by the four-months lag of the forward energy 

price change and the three-months lag of the P/E ratio of the Cement sector explain 13,1% of the 

variation of RRR of the Construction & Materials sector. 

 

The Chemicals sector is similar in results to the Basic Resources sector in what the financial ratios 

concern: they do not add any information to the model. Therefore, the final MoM model for the 

Chemicals sector is considered the one of the Table 44: the one-month lag of the EC of the 

Chemicals sector accompanied by the five-months lag of the forward energy price change and the 

three-months lag of the carbon permits’ price change explain 8,5% of the variation of RRR of the 

Chemicals sector. 

 
 
 

2.5.2. Year-over-Year data: 
 
 
As far as the electricity consumption of the Chemicals sector together with the CO2 intensity explain 

a big share of the variation of the sector B/M and P/E ratio, these financial variables were not included 

in the final model. Therefore, the model for the Chemicals sector with the CO2 intensity in Table 48 

is considered the final model for this sector. 

 

Table 52: OLS Regressions: YoY Stock Returns of Basic Resources and 
Construction & Materials sectors against the MoM Electricity of Steel and Cement 

sectors, energy efficiency measures, forward energy price change, carbon permits’ 
price change, sector book-to-market and price-earnings ratios. 

 
Y1t is YoY Basic Resources Stock Return at time t, 

xYoYECS(t-1) is YoY Electricity Consumption of Steel sector at time (t-1);  

xUConsS(t-1) is the Intensity of Energy Consumption of Steel sector per ton of production (kWh/t) at time (t-1); 

xBMI(t-1) is the Book-to-Market ratio of the Metals sector at time (t-1); 

xPEI(t-1) is the Price-Earnings ratio of the Metals sector at time (t-1). 

 

Model 1: Y1t = β0 + β1 xYoYECS(t-1) + β3 xUConsS(t-1) + β6 xBM(t-1) + εt 
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Model 2: Y1t = β0 + β1 xYoYECS(t-1) + β3 xUConsS(t-1) + β7 xPE(t-1) + εt 
 

Y2t is YoY Construction & Materials Stock Return at time t, 

xYoYECCem(t-4) is YoY Electricity Consumption of Cement sector at time (t-4);  

xNMMEnInt(t-4) is the Energy intensity of Non-Metal Mineral sector (koe/EURO 2015) at time (t-4); 

xYoYEP(t-1) is the YoY Forward Energy Price variation at the MTE market at time (t-1); 

xYoYPCO2(t-1) is the YoY Carbon Permits’ Price variation at time (t-1); 

xBMI(t-4) is the Book-to-Market ratio of the Cement sector at time (t-4). 

xPEI(t-4) is the Price-Earnings ratio of the Cement sector at time (t-4). 

 

 
Model 3: Y2t = β0 + β1 xYoYECCem(t-4) + β2 xNMMEnInt(t-4) + β4 xYoYEP(t-1) + β5 xYoYPCO2(t-1) + β6 xBM(t-4) + β7 xPE(t-4) + εt 

 

 

 
The table describes the results of the OLS regressions performed on the following variables: the year-over-year stock return of 

the Basic Resources sector corrected for inflation, the year-over-year stock return of the Construction & Materials sector 

corrected for inflation, the year-over-year change of the electricity consumption of the Steel sector lagged by one month, the 

year-over-year change of the electricity consumption of the Cement sector lagged by four months, the physical electricity 

intensity of the Cement sector lagged by four months, the year-over-year forward energy price change lagged by one month, 

the year-over-year carbon permits’ price change lagged by one month, the book-to-market ratio of the Metals sector lagged by 

one month, the price-earnings ratio of the Metals sector lagged by one month, the price-earnings ratio of the Cement sector 

lagged by four months, the book-to-market ratio of the Cement sector lagged by four months. The Sample period: Jan 2011 – 

Dec 2018. 
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Judging by the results in the table above, the only industrial sector whose model is improved after 

the inclusion of the financial ratios is the Construction & Materials sector, the least performing sector 

from the point of view of energy efficiency. In fact, this sector presents an anomaly because its 

earnings grow faster than the productivity deducted from the electricity usage. That is why the 

financial ratios which are based on the effective productivity of the sector, not necessarily linked to 

the increase or reduction in electricity consumption, make their important contribution to the sector 

YoY model. 

 

For the other sectors (Basic Resources and Chemicals), the information which is incorporated in the 

B/M and P/E ratios is already present in the electricity consumption variable, some energy efficiency 

measures and the price changes of energy and carbon emissions. In fact, the price-earnings ratio of 

the Steel sector reduces the significance of the electricity consumption variable by attracting towards 

itself a little of the statistical significance. By doing so it also reduces the performance of the model 

which is decreased. Therefore, to get the best inference results, these financial ratios should be 

dropped from the models for Basic Resources and Chemicals sectors. This is true for both month-

over-month and year-over-year tests. 

 

Also, as it was expected, the energy efficiency measures add significance to the models unevenly 

across the sectors. It can be explained not only by the energy efficiency situation of the sectors but 

also by some individual production decisions of the firms that cannot be forecasted beforehand and 

are based on a variety of factors which are found outside the production process. 

 

So, to sum up, the final most successful models which result from the analysis of this chapter the 

from the point of view of predictor power are the following: 
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Table 53: Synthetic representation of the judgment on final regression results on 
MoM and YoY data of Basic Resources, Construction & Materials and Chemicals 
sectors stock returns, electricity consumption of Metals, Cement and Chemicals 
sectors, energy efficiency measures, forward energy price, carbon price, sector 

book-to-market and price-earnings ratios. 
 

 
Basic 

Resources 

MoM 

Basic 

Resources 

YoY 

Construction 

& Materials 

MoM 

Construction 

& Materials 

YoY 

Chemicals 

MoM 

Chemicals 

YoY 

Electricity 

Consumption 
✔ ✔ ✔ ✔ ✔ ✔ 

Energy 

Intensity  

value added 

x x x ✔ x x 

Energy 

Intensity 
x ✔ ✔ x x x 

CO2 Intensity x x x x x ✔ 

Fwd Energy 

Price 
x x ✔ ✔ ✔ x 

CO2 Price x x x ✔ ✔ ✔ 

B/M x x x ✔ x x 

P/E x x ✔ ✔ x x 

Adj R2 13,7% 17,4% 13,1% 40,6% 8,5% 37,2% 

 

The table describes the results of the OLS regressions performed on the following variables: the month-over-month and the 

year-over-year stock returns of the Basic Resources sector corrected for inflation, the month-over-month and the year-over-

year stock return of the Construction & Materials sector corrected for inflation, the month-over-month and the year-over-year 

stock return of the Chemicals sector corrected for inflation, the month-over-month change of the electricity consumption of the 

Steel sector lagged by six months, the month-over-month change of the electricity consumption of the Cement sector lagged 

by three months, the month-over-month change of the electricity consumption of the Chemicals sector lagged by one month, 

the year-over-year change of the electricity consumption of the Steel sector lagged by one month, the year-over-year change 

of the electricity consumption of the Cement sector lagged by four months, , the physical electricity intensity of the Cement 

sector lagged by three and four months, the month-over-month forward energy price change lagged by four and by five months, 

, the year-over-year forward energy price change lagged by one month, the month-over-month carbon permits’ price change 

lagged by one and by three months, , the year-over-year carbon permits’ price change lagged by one month, the book-to-market 

ratio of the Metals sector lagged by one and by six months, the price-earnings ratio of the Metals sector lagged by one and by 

six months, the price-earnings ratio of the Cement sector lagged by three and by four months, the book-to-market ratio of the 

Cement sector lagged by three and by four months, the book-to-market ratio of the Chemicals sector lagged by one month, the 

price-earnings ratio of the Chemicals sector lagged by one month. The Sample period for MoM: Feb 2010 – Dec 2018, for YoY: 

Jan 2011 – Dec 2018. 

 

 
The conclusion that it is possible to draw from the analysis of this chapter is that the electricity 
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consumption variable corrected, if needed, by the energy efficiency measures and accompanied by 

the boosters of energy efficiency (the forward energy price change and the carbon price change) is 

enough to explain an important share of the variation of sector stock returns. And the financial 

variables (B/M and P/E) which are commonly used in asset pricing practices, lose their predictor 

power and worsen the model inference results if included in the tests on the relatively energy efficient 

industrial sectors (Basic Resources and Chemicals) together with the electricity consumption and 

the other abovementioned variables.  

 

The Construction & Materials sector, which is the least energy efficient sector out of the three sectors 

under consideration (and the least but one “worst” sector among all industrial sectors in Italy, the 

least being the Machinery sector) needs numerous predictors of stock returns in its model because 

the electricity consumption variable alone is not enough to explain the fluctuations in the sector price 

index (MoM and YoY change). It is evident that the market does not fully trust the data on electricity 

consumption to value the productivity of this sector. Therefore, it needs other information to deduce 

the sector growth potential. 

 

The results presented in this chapter can be considered important and reliable. The only minus is 

the narrowness of the dataset due to the availability. Hence, if the same tests performed on the data 

coming from a different country with a similar market produce the same results, the robustness of 

the research would gain weight. So, for this purpose the Swedish data were gathered and tested. 

The next chapter presents the relative results. 

 

  



107 
 

Chapter 3. The Swedish Data 
 
 

In order to enrich and confirm the study on the Italian industrial sectors which does not present large 

datasets, the only way is to find the data relative to a country with a similar market and, most 

importantly, with available detailed data on sector energy consumption and energy efficiency 

measures.  

 

Sweden happens to have a stock market similar to the Italian one in terms of market capitalization 

(2023 data: 704 997,6 ml € for Borsa Italiana, 793 360 ml € (converted from Swedish Korona) for 

Stockholm Stock Exchange) and number of listed companies (425 for Italy vs 395 for Sweden). 

Besides, the industrial sectors under consideration (Basic Resources, Construction & Materials, 

Chemicals) have a similar composition for both countries: the least represented is the Chemicals 

sector (1-2 companies) which is followed by the Basic Resources sector (4-8 companies) and, finally, 

the most represented is the Construction & Materials sector (13-20 companies). Also, the 

Construction & Materials sector is again the least virtuous in terms of energy efficiency which grows 

very little during the sample period (see the comparative Figures 19, 22 and 23 in Appendix A) while 

Chemicals (the Italian Chemicals sector presents a clearer and more regular trend, see Figure 20 

and 25 in Appendix A) and Basic Resources sectors (similar decreasing trends for both countries, 

see Figure 18, 21 and 24 in Appendix A) are much more performing in this respect. The website of 

Odyssee-Mure project does not provide the energy efficiency index ODEX for Sweden but knowing 

that it is mostly based on the physical energy intensity of the industrial sectors, it is possible to deduct 

the information which it usually conveys from the energy efficiency measures. Besides, Odyssee-

Mure project issues regularly the country energy profiles21 which help to understand the undergoing 

improvements due to energy efficiency policies. 

 

The database on industrial electricity consumption in Sweden is rich, up-to-date and freely available 

on the website of Statistics Sweden22. For the purposes of the analysis of this research those data 

were then transformed into MoM and YoY time-series, and in the first case also seasonally adjusted 

with the Demetra software. 

 

The series of monthly average prices of Swedish industrial sector stock indices were downloaded 

from www.investing.com  website and then converted into MoM and YoY time-series. 

 

Unfortunately, the part of the regressions including the energy forward price and the carbon permit 

 
21 https://www.odyssee-mure.eu/publications/efficiency-trends-policies-profiles/ 
 
22 https://www.statistikdatabasen.scb.se/pxweb/sv/ssd/START__EN__EN0108/ElForbr07M/  

http://www.investing.com/
https://www.odyssee-mure.eu/publications/efficiency-trends-policies-profiles/
https://www.statistikdatabasen.scb.se/pxweb/sv/ssd/START__EN__EN0108/ElForbr07M/
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price could be performed only partially lacking any information on the carbon permits’ price 

(Sweden’s energy certificates market has been inactive since 2008 due to the lack of demand). The 

data on the sector price-earnings ratio and sector book-to-market ratios are unavailable either. 

However, the first part of the analysis may still contribute significantly by serving as a proof of the 

results obtained by the main study based on the Italian data. 

 

As in the previous chapter, this part of the study begins with the month-over-month data regressions 

and then goes on with the year-over-year ones. 

 

3.1. Data and Methodology.  
 

3.1.1. Data. 
 
Swedish industrial energy consumption historical data (Gwh) for the period between 2009 and 2021 

(January 2009 – October 2021) was downloaded from the Statistics Sweden website. The data are 

monthly electric energy supply statistics (GWh) referring to three energy-intensive Swedish industrial 

sectors (Construction & Materials; Chemicals; Basic Resources). The list of the Swedish companies 

whose electricity consumption is considered by the database, is not available. 

 

The time-series of price indices that constitute the dependent variables in the statistical tests 

(Swedish stock returns) were downloaded once again from the website www.investing.com. The 

market-value-weighted OMX Stockholm stock market subindices were associated with the industrial 

sector electricity consumption series which have the same name: 

 

Table 54: Matching of Stock Market Indices to Industrial Electricity Consumption 

by sector. 

 
Stock Market Index Sector Electricity Consumption 

 

OMX Stockholm Basic Resources PI 

SX5510PI 

 

 

Steel & Metals 

(24 stal- och metallverk) 

 

 

OMX Stockholm Construction & Materials PI 

SX5010PI 

 

 

Non-metallic Mineral 

(23 industri för andra icke-metalliska 

mineraliska produkter) 

 

OMX Stockholm Chemicals PI 

SX1350PI 

 

 

Chemicals & Petroleum products 

(19-21 kemisk industri, petroleumprodukter och 

läkemedelsindustri) 

 

 

http://www.investing.com/
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Table 55: Descriptive Statistics (investing.com) 
 

The table gives a detailed descriptive statistics of the data downloaded from the website 

investing.com 

 

Index Name Code Stock 

Exchange 

Currency Time 

Frame 

Period Price 

Type 

OMX 

Stockholm 

Basic 

Resources PI 

 

SX5510PI 

 

Stockholm SEK Monthly Jan 2009 – 

Oct 2021 

Last Price 

avg 

OMX 

Stockholm 

Construction & 

Materials PI 

 

SX5010PI 

 

Stockholm SEK Monthly Jan 2009 – 

Oct 2021 

Last Price 

avg 

OMX 

Stockholm 

Chemicals PI 

 

SX1350PI 

 

Stockholm SEK Monthly Jan 2009 – 

Oct 2021 

Last Price 

avg 

 

 

A time varying energy intensity, or energy efficiency, is included in the theoretical model which was 

previously tested for the Italian data and now will be tested for the Swedish data. All the necessary 

Swedish energy-efficiency measures were downloaded from Odyssee Mure project website23. And 

specifically: the Primary Metals (ISIC 24) Energy Intensity (koe/EUR2015); the Intensity of CO2 

emissions of the Steel industry (tCO2/t); the Specific Energy consumption of the Steel industry; the 

Non-Metallic Minerals (ISIC 23) Energy Intensity at exchange rate (koe/EUR2015); the Intensity of 

CO2 emissions of the Cement industry (electricity included) (tCO2/t); the Specific Electricity 

consumption of the Cement industry (kWh/t); the Chemical Industry (ISIC 20-21) value-added 

Energy Intensity (koe/EUR2015); the value-added total CO2 Intensity of the Chemical industry 

(kCO2/ EUR2015). All the energy-efficiency data are at annual level. 

 

The details on the calculation of the energy efficiency measures downloaded from the investing.com 

website are the same for Italy and for Sweden and can be found in Table 16. 

 

These measures were associated with the industrial sector electricity consumption provided by 

Statistics Sweden in the following way:  

 

 

 
23 https://www.odyssee-mure.eu/. 

https://www.odyssee-mure.eu/
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Table 56: Matching of Energy Efficiency Measures to Industrial Electricity 

Consumption by sector 
 

Energy Efficiency Measure Sector Electricity Consumption 

 

Primary Metals (ISIC 24) Energy Intensity 

CO2 emissions of Steel per ton 

Unit Energy consumption of Steel 

  

 

Steel & Metals 

(24 stal- och metallverk) 

 

 

 

Non-Metallic Mineral (ISIC 23) Energy Intensity 

CO2 emissions of Cement per ton 

Unit Electricity consumption of Cement 

 

 

Non-metallic Mineral 

(23 industri för andra icke-metalliska 

mineraliska produkter) 

 

Chemical industry (ISIC 20-21) Energy Intensity 

CO2 emissions Intensity of Chemical industry 

 

 

Chemicals & Petroleum products 

(19-21 kemisk industri, petroleumprodukter och 

läkemedelsindustri) 

 

 

 

The descriptive statistics of the data downloaded from the Odyssee-Mure database for Swedish 

industry are the same as for the Italian industry and can be found in Table 19. 

 

The list of the used energy intensity measures was presented above in Table 56. Once again, the 

data are available only at annual level; therefore, the monthly series were produced artificially by 

Denton procedure in Stata which recreates the monthly fluctuations of the annual data by adapting 

the trend from the time-series of a variable which is correlated with the variable under consideration. 

The indicator for this purpose was the variable price of electricity in Sweden (Rörligt pris), whose 

historical monthly series (2008 – 2023) is published by the Swedish Energy Markets Inspectorate 

(Energimarknadsinspektionen)24. 

 

The table below shows the correlations between energy efficiency measures and the variable 

electricity price in Sweden. The values are positive (except for the value-added energy intensity of 

the Chemicals sector) and most of them are reasonably high for the variable electricity price to be 

considered the indicator for the Denton temporal disaggregation method. Only the value-added 

energy intensity of the Chemicals sector presents negative and not significant correlation with the 

electricity price time-series.  

 

 
24 https://ei.se/ Energimarknadsinspektionen, the Swedish Energy Markets Inspectorate. 

https://ei.se/
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Table 57: Correlation between energy and CO2 emissions intensities and the 
Swedish Variable Electricity Price (Rörligt pris) 

 

 Energy efficiency measures 

Energy 

intensity of 

Primary 

Metals 

(koe/EUR

2015) 

Unit 

consumpti

on of 

crude 

steel 

(toe/t) 

Total CO2 

emissions of 

steel per ton 

(tCO2/t) 

Energy 

intensity of 

non-metallic 

minerals 

(koe/EUR20

15) 

Unit 

consumpti

on of 

electricity 

of Cement 

(kWh/t) 

Total CO2 

emissions of 

cement per 

ton 

(tCO2/t) 

Energy 

intensity of 

Chemicals 

(koe/EUR20

15) 

Total CO2 

intensity of 

Chemicals 

(kCO2/EU

R2015) 

Variable 

Electricity 

Price 

(öre/KWh) 

0,30 0,61 0,77 0,62 0,56 0,36 -0,21 0,52 

 

 

The monthly data on Swedish forward energy prices were downloaded from the official website of 

the Swedish Energy Markets Inspectorate (https://ei.se/ ). The data were time series of fixed prices 

contracts for one and three years, the average price of these contracts was used to create a monthly 

time-series of forward energy price. Then the series was transformed into MoM and YoY series 

according to the necessity, and, if seasonality was present (MoM series), it was then removed by 

the Tramo-Seats procedure by means of Demetra+ software. 

 

The monthly data on the Swedish inflation index (HICP, Overall Harmonised Index of Consumer 

Prices25, not seasonally adjusted, monthly values, 2015=100), necessary for the calculation of the 

real stock return (RRR = (1 + stock return)/(1 + inflation) -1), were once again downloaded from the 

website of the Statistical Data Warehouse of the European Central Bank. Monthly data (levels) for 

the period Jan 2008 – Jan 2023. Then, the MoM and YoY series were produced manually on the 

basis of the levels series. The stock return series used for the calculation of the RRR was either in 

MoM, not seasonally adjusted, or in YoY form. 

 

 

3.1.2. Methodology 
 

The main reference for the methodology of this part of the research remains the same as for the 

Italian data (equation 50) - the first specification of technology in Burnside et al. (1995): the non-

substitutability of the energy input by other inputs; and the year-over-year growth rate by Da et al. 

(2017). 

 

 
25https://sdw.ecb.europa.eu/quickview.do;jsessionid=29B15E1DC261F6D28E38698557200035?SERIES_KEY=122.ICP.M.SE.N.00000
0.4.INX  

https://ei.se/
https://sdw.ecb.europa.eu/quickview.do;jsessionid=29B15E1DC261F6D28E38698557200035?SERIES_KEY=122.ICP.M.SE.N.000000.4.INX
https://sdw.ecb.europa.eu/quickview.do;jsessionid=29B15E1DC261F6D28E38698557200035?SERIES_KEY=122.ICP.M.SE.N.000000.4.INX
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The raw industrial electricity consumption time-series downloaded from the Statistics Sweden 

website are affected by seasonality which could produce unreliable inference results. Then, as 

already pointed out, the raw data were first tested for seasonality by the Demetra+26 software and 

then seasonally adjusted. Finally, only the seasonally adjusted time-series were used in the 

regressions. The electricity consumption variable is again used as a lagged variable in the 

regressions. The justification is the same as for the Italian data – the different length of production 

cycles and different company decisions on the productivity (production capacity), products etc. 

 

The annual Odyssee-Mure energy efficiency measures relative to the Swedish energy-intensive 

industrial sectors, which have undergone the Denton procedure (the Swedish variable energy price 

being the indicator) to obtain monthly time-series, as for the Italian data, were lagged according to 

the chosen lag of the electricity consumption variable for each sector under consideration. 

 

As for the Italian data, the check for the possible multicollinearity issue between the annual series of 

the energy intensities of the same industrial sectors is due. 

 

Without doubt, the series of energy efficiency measures which are correlated to the same indicator, 

are correlated between themselves too. So, the correlations matrix for the monthly data of the energy 

efficiencies was omitted. Only the correlations between the annul data are presented in the table 

below. 

 

Table 58: Correlations check between the energy intensities of the Swedish energy-
intensive industrial sectors. 

 

Correlations 

↓→ 

Energy Intensity of 

Primary Metals 

(koe/EUR2015) 

Energy Intensity of 

Non-Metallic 

Minerals 

(koe/EUR2015) 

 

Energy Intensity of 

Steel (toe/t) 0,84  

 

Electricity Intensity 

of Cement (kWh/t) 
 0,63 

 

For the Steel sector: correlation between the unit consumption of energy per ton of product of crude steel (toe/t) 

and the energy intensity of Primary Metals sector (koe/EUR2015). For the Cement sector: correlation between 

the unit consumption of electricity per ton of product (kWh/t) and the energy intensity of Non-Metallic Minerals 

sector (koe/EUR2015). Sample Period: 2009 – 2020. 

 
26 The TRAMO-SEATS procedure. 
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Besides, as for the Italian data, also for the Swedish data the intensity of CO2 emissions is checked 

for being a proxy for the electricity consumption of the Swedish industrial energy-intensive sectors. 

For Sweden too the correlations between the energy (electricity) intensity and the CO2 emissions 

intensity are positive and noteworthy: 

 

 

Table 59: Correlations check between the energy intensities and CO2 emissions 
intensity of the energy-intensive industrial sectors. 

 

Correlations 

↓→ 

CO2 Intensity of 

Steel (tCO2/t) 

CO2 Intensity of 

Chemicals 

(kCO2/EUR2015) 

CO2 Intensity of 

Cement (tCO2/t) 

 

Energy Intensity of 

Steel (toe/t) 0,96   

Energy Intensity of 

Primary Metals 

(koe/EUR2015) 0,68   

 

Energy Intensity of 

Chemicals 

(koe/EUR2015) 

 

 0,68  

 

Electricity Intensity 

of Cement (kWh/t) 
  0,45 

Energy Intensity of 

Non-Metallic 

Minerals 

(koe/EUR2015) 

  0,31 

 
For the Steel sector: correlation between the unit consumption of energy per ton of product of crude steel (toe/t), 

the energy intensity of Primary Metals sector (koe/EUR2015) and the intensity of CO2 emissions of steel 

production per ton of product (tCO2/t). For the Chemical sector: correlation between the energy intensity per 1€ 

(base 2015) of production value (koe/EUR2015) and the intensity of CO2 emissions of chemical production per 

1€ (base 2015) of production value (kCO2/EUR2015). For the Cement sector: correlation between the unit 

consumption of electricity per ton of product (kWh/t), the energy intensity of Non-Metallic Minerals sector 

(koe/EUR2015) and the intensity of CO2 emissions of cement production per ton of product (tCO2/t). Sample 

Period: 2009 - 2020. 

 

 

Therefore, just like for the Italian data, the intensity of CO2 emissions is added to the regression 

equations together with energy intensities. 
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Again, the full version of the equation (50) could never be performed and only reduced versions were 

tested due to the high correlation between the energy efficiency measures. 

 

As for the Italian data, the Swedish forward energy price change variable was used in its lagged 

version to account for the delay with which the sector reacts to its variation in terms of energy 

efficiency. 

 

The steps of the analysis are identical to the ones carried out on the Italian data. Therefore, first the 

regressions with MoM data series were performed (the dependent variable being the MoM sector 

stock return, the independent variable – MoM sector electricity consumption variable). First, to decide 

which lag (from one month to six months) of the electricity consumption variable to use, the single-

factor regressions were performed. Then, the most statistically significant lag was used in multiple-

factor regressions with energy efficiency measures. After having chosen the most significant energy 

efficiency measure, if any, it is then used in the final regression with the Swedish forward energy 

price change. 

 

Once again by following the methodology by Zhi Da et al. (2017) the regression tests (the OLS 

procedure, the ordinary least squares) were carried out on the year-over-year time-series to see 

whether the results are comparable with those obtained by Zhi Da et al. for the US stock market and 

those obtained for the Italian data in this research. The monthly YoY sector stock return acts as the 

dependent variable in the regression where the independent variable is the monthly YoY sector 

electricity consumption growth, the energy efficiency measures and the Swedish forward energy 

price change. The steps are the same as for the tests on the MoM data. 

 

After having performed the tests on MoM and YoY, the conclusions are drawn whether also for the 

Swedish energy-intensive industrial sectors the electricity consumption, corrected by energy 

efficiency measures, explains the relative stock returns. 
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3.2. Regressions 
 
Here follows is the regression analysis performed on the electricity consumption, energy efficiency 

measures and the forward energy price change, the dependent variable being the month-over-month 

or the year-over-year change in industrial sector stock returns corrected for inflation. 

 

The results would be again analised from the perspective of the relation between electricity 

consumption and the change in energy efficiency – the crucial point in the chain of impacts which 

goes through productivity and up to stock prices and stock returns. 

 

As it was mentioned at the beginning of this chapter, the Construction & Materials sector (Non-

Metallic Minerals, Cement) is the least performing from the point of view of energy efficiency for both 

Italy and Sweden (Figures 19, 22, 23 in Appendix A). Hence, it is expected that the regression results 

on the Swedish data would be similar to those obtained for Italy. In turn, the Swedish Chemicals 

sector is more energy efficient than the Italian one but the speed of improvement of energy efficiency 

in the sample period is higher for Italy (Figures 20 and 25 in Appendix A). The decreasing trend of 

energy efficiency measures for the Swedish Chemicals sector is not clear, it has high oscillations 

and sometimes even reverses the direction of movement. Hence, it is plausible to expect slightly 

worse regression results compared to those of the tests on the Italian data. The Swedish Basic 

Materials sector (Primary Metals, Steel) seems to be more or less equally energy-efficiency 

performing (Figures 18, 21, 24 in Appendix A) as the corresponding Italian sector. Therefore, the 

expected regression results are not expected to differ greatly from those of the Italian data.  

 

The following tests will show if these intuitions are correct. 

 
 

3.2.1. Month-over-month data 
 
The first step of the MoM regressions is the same as for the Italian MoM data: the choice of the most 

significant lag of the electricity consumption variable of the energy-intensive sectors under 

consideration to be used in further analysis. The relative tables can be found in Appendix B: for the 

Swedish Basic Resources sector – Table 66, for the Swedish Construction & Materials sector – 

Table 67, for the Swedish Chemicals sector – Table 68. 

 

As before, the energy efficiency measures are used one at a time in the regressions due to high 

correlations between them (see Appendix B). 

 

Then, the analysis goes on with the regression of MoM sector stock returns on the chosen lag of the 
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electricity consumption variable and energy efficiency measures. 

 

 

 

Table 72: OLS Regressions: MoM Stock Returns of Swedish Basic Resources, 
Construction & Materials and Chemicals sectors against their MoM Electricity 

Consumption and energy efficiency measures. 
 

 
Y1t is MoM Swedish Basic Resources Stock Return at time t,  

xMoMECS(t-3) is MoM Seasonally Adjusted Electricity Consumption of Basic Resources sector at time (t-3);  

xPMEnInt(t-3) is the Energy intensity of Primary Metals sector (koe/EURO 2015) at time (t-3);  

xUConsS(t-3) is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time (t-3); 

xCO2Steel(t-3) is the Intensity of CO2 emissions of Steel sector (tCO2/t) at time (t-3). 

 
Model 1: Yt = β0 + β1 xMoMECS(t-3) + εt 

 
Model 2: Yt = β0 + β1 xMoMECS(t-3) + β2 xPMEnInt(t-3) + εt 

 
Model 3: Yt = β0 + β1 xMoMECS(t-3) + β3 xUConsS(t-3) + εt 

 

Model 4: Yt = β0 + β1 xMoMECS(t-3) + β4 xCO2Steel(t-3) + εt 

 

Y2t is MoM Swedish Construction & Materials Stock Return at time t,  

xMoMECCem(t-4) is MoM Seasonally Adjusted Electricity Consumption of Construction & Materials sector at time (t-4);  

xNMNEnInt(t-4) is the Energy intensity of Non-Metal Minerals sector (koe/EURO 2015) at time (t-4); 

xUConsC(t-4) is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time (t-4); 

xCO2Cement(t-4) is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time (t-4). 

 
Model 5: Yt = β0 + β1 xMoMECCem(t-4) + εt 

 
Model 6: Yt = β0 + β1 xMoMECCem(t-4) + β2 xNMMEnInt(t-4) + εt 

 
Model 7: Yt = β0 + β1 xMoMECCem(t-4) + β3 xUConsC(t-4) + εt 

 

Model 8 : Yt = β0 + β1 xMoMECCem(t-4) + β4 xCO2Cement(t-4) + εt 

 
Y3t is MoM Swedish Chemicals Stock Return at time t, 

xMoMECChem(t-6) is MoM Seasonally Adjusted Electricity Consumption of Chemical sector at time (t-6);  

xChemEnInt(t-6) is the Energy intensity of Chemicals sector (koe/EURO 2015) at time (t-6);  

xCO2Chem(t-6) is the Intensity of CO2 emissions of Chemicals sector (kCO2/EURO 2015) at time (t-6). 

 
Model 9: Yt = β0 + β1 xMoMECChem(t-6) + εt 

 
Model 10: Yt = β0 + β1 xMoMECChem(t-6) + β2 xChemEnInt(t-6)+ εt 

 
Model 11: Yt = β0 + β1 xMoMECChem(t-6) + β4 xCO2Chem(t-6) + εt 
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The table describes the results of the OLS regressions performed on the following variables: the month-over-month Swedish 
Basic Resources stock return corrected for inflation, the month-over-month Swedish Construction & Materials stock return 
corrected for inflation, the month-over-month Swedish Chemicals stock return corrected for inflation; the month-over-month 
electricity consumption of Basic Resources sector lagged by three months, the month-over-month electricity consumption of 
Construction & Materials sector lagged by four months, the month-over-month electricity consumption of Chemicals sector 
lagged by six months, and the energy efficiency measures: the value-added energy intensity of Primary Metals sector lagged 
by three months, the physical energy intensity of Steel sector lagged by three months, the physical CO2 emissions intensity of 
Steel sector lagged by three months, the value-added energy intensity of Non-metal Minerals sector lagged by four months, the 
physical electricity intensity of Cement sector lagged by four months, the physical CO2 emissions intensity of Cement sector 
lagged by four months, the value-added energy intensity of Chemicals sector lagged by six months, the value-added CO2 
emissions intensity of Chemicals sector lagged by six months. Max Sample period: Feb 2009 – Jul 2020. 
 

 

First of all, it is important to highlight the fact that the results presented in the table above confirm 

once again the base of the theoretic model elaborated in this research - namely, the predictor power 

of the industrial electricity consumption over the industrial sector stock returns (by impacting the 

productivity). The chosen lags of sector month-over-month electricity consumption variable are 

always statistically significant if used alone (models 1, 5, 9). The sign (positive) of the coefficient of 

the EC variable for industrial sectors is consistent with the model setting. This time it is true also for 

the electricity consumption of the Chemicals sector which presented a negative sign in the MoM 

regressions on the Italian data. This is exactly what was expected judging by the energy efficiency 

of the Swedish industrial sectors. The energy efficiency of the Swedish Chemicals sector does not 

grow at such an extraordinary rate as it does in Italy, therefore, the increase in the usage of electricity 

is more important for the productivity than the increase, if there is any, of the sector energy efficiency. 

Hence, the sign of the coefficient is not reversed, and the logic of impacts follows the theoretical 

setting of this research.  

 

As for the signs of the regression coefficients of the energy efficiency measures, some seeming 
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anomalies are observed. The expected sign (positive) is not detected for any sector. This means 

that the increase in electricity consumption leads to the increase in energy intensities (energy and 

CO2 per ton of production), and consequently the decrease in energy efficiency that in theory should 

lead to the decrease in production. However, it is clear from the positive sign of the electricity 

consumption that the production increases. Then, it is evident that the production increase is less 

proportional than the increase in energy input and the relative CO2 emissions. So, in the end the 

energy/CO2 intensities increase, and the energy efficiency is slightly decreasing. This fact justifies 

the negative sign of energy efficiency measures. 

 

Besides, if for the Italian data the energy efficiency measures were never statistically significant for 

the Basic Resources and Chemicals sectors, here the physical energy intensity and the CO2 

intensity are significant for the Basic Resources sector. However, the Chemicals sector, as before, 

does not need the correcting effect of any energy efficiency measure which are not significant. For 

the Construction & Materials sector the physical energy intensity and the CO2 intensity are again 

significant. 

 

It is important to note that the market relies more on the continuous upward change in energy 

efficiency which ensures a growth potential of the sector. The Chemicals sector shows some 

important oscillations in energy/CO2 intensities at monthly level (Figures 20 and 25), hence, the 

market prefers to rely entirely on the data on electricity consumption. The Construction & Materials 

sector presents an unclear situation: Figure 19 shows high fluctuations in the value-added energy 

intensity which is difficult to interpret for the market, Figures 22 and 23 show smooth but ambiguous 

trends in the oscillations of the energy and CO2 intensities, hence the market pays slight attention 

to them (the variables are weakly significant in the regressions). Therefore, the market still relies 

more on the electricity usage variable rather than on the energy efficiency measures to value the 

growth potential of the sector. 

 

For the Basic Resources sector too the impact of the electricity consumption is more important for 

the explanation of stock returns rather than the change in energy efficiency. The speed of the 

increase in energy efficiency (Figures 18, 21, 24) is not fast enough (in fact, the trend is rather flat) 

to impact the productivity in the way for the market to notice that before taking the decision on the 

reliability of the firms of this industrial sector.  

 

Then, it is necessary to choose the energy efficiency measures which will be retained in further 

analysis. For the Basic Resources sector the most performing intensity is the CO2 emissions 

intensity. Therefore, it will be included in further regressions. For the Construction & Materials sector 

the most significant measure is again the CO2 emissions intensity. Keeping in mind that the annual 
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series on CO2 emissions of the Cement sector was not highly correlated (0,36) with the indicator 

series used to produce monthly series, it will be included in the further analysis with some 

precautions. 

 

So, before moving to the tests on year-over-year, the second step of the analysis of the month-over-

month data should be performed. It consists in integrating the regression analysis with the forward 

electricity price change. The lags of this variable are chosen in such a way as to produce the best 

inference results (see Tables 69, 70, 71 in Appendix C). Then, the multiple-factor regressions are 

run. 

 
 

Table 73: OLS Regressions: MoM Stock Returns of Swedish Basic Resources, 
Construction & Materials and Chemicals sectors against their MoM Electricity 
Consumption, energy efficiency measures and forward energy price change. 

 
Y1t is MoM Swedish Basic Resources Stock Return at time t, 

xMoMECS(t-3) is MoM Seasonally Adjusted Electricity Consumption of Basic Resources sector at time (t-3);  

xCO2Steel(t-3) is the Intensity of CO2 emissions of Steel sector (tCO2/t) at time (t-3); 

xMoMEP(t-3) is the MoM Seasonally Adjusted Forward Energy Price variation at time (t-3). 

 
Model 12: Y1t = β0 + β1 xMoMECS(t-3) + β2 xCO2Steel(t-3) + β3 xMoMEP(t-3) + εt 
 

Y2t is MoM Swedish Construction & Materials Stock Return at time t, 

xMoMECCem(t-4) is MoM Seasonally Adjusted Electricity Consumption of Construction & Materials sector at time (t-4);  

xCO2Cement(t-4) is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time (t-4); 

xMoMEP(t-4) is the MoM Seasonally Adjusted Forward Energy Price variation at time (t-4). 

 

Model 13: Y2t = β0 + β1 xMoMECCem(t-4)+ β2 xCO2Cement(t-4)+ β3 xMoMEP(t-4) + εt 

 

Y3t is MoM Swedish Chemicals Stock Return at time t, 

xMoMECChem (t-6) is MoM Seasonally Adjusted Electricity Consumption of Chemical sector at time (t-6);  

xMoMEP(t-1) is the MoM Seasonally Adjusted Forward Energy Price variation at time (t-1). 

 

 
Model 14: Y3t = β0 + β1 xMoMECChem (t-6) + β3 xMoMEP(t-1) + εt 
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The table describes the results of the OLS regressions performed on the following variables: the month-over-month stock return 

of the Swedish Basic Resources sector corrected for inflation, the month-over-month stock return of the Swedish Construction 

& Materials sector corrected for inflation, the month-over-month stock return of the Swedish Chemicals sector corrected for 

inflation, the month-over-month change of the electricity consumption of the Basic Resources sector lagged by three months, 

the month-over-month change of the electricity consumption of the Construction & Materials sector lagged by four months, the 

month-over-month change of the electricity consumption of the Chemicals sector lagged by six months, the physical electricity 

intensity of the Cement sector lagged by three months, the physical CO2 emissions intensity of Steel sector lagged by three 

months, the physical CO2 emissions intensity of Cement sector lagged by four months, the month-over-month forward energy 

price change lagged by one, three and four months. The Sample period: Feb 2009 – Jul 2020. 

 

 

As it can be seen from the results in the table above the month-over-month change in electricity 

consumption is confirmed to be an important predictor of industrial sector stock returns. However, 

the addition of the forward energy price change to the regression does not improve the performance 

of the model where the energy efficiency measures are present. On the other hand, if used with the 

electricity consumption of the Chemicals sector, it becomes statistically significant and improves the 

performance of the whole model. This is consistent with the idea that the forward energy price may 

work like a booster but this time not of energy efficiency, which is stagnant, but directly of productivity 

through the increase of energy input. The increase in future price of energy makes the companies 

decide to produce more today rather than tomorrow to mitigate the future cost or they may even 

change the product type. Therefore, the market notices the increase in productivity and values it 

positively. Hence, the positive regression coefficient sign. 

 

If instead of the CO2 intensity, the physical energy intensities are used in the regressions for Basic 

Resources and Construction & Materials sectors, the results are getting a little bit worse (see Table 
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74 in Appendix C). The useful information, which they could convey to the model, is already present 

inside the electricity consumption variable, hence, adding them to the regression only injects some 

volatility which worsens the inference results because the market does not base its valuation 

decisions on it. 

 

Then, the final MoM models for the explanation of Swedish stock returns of the Swedish industrial 

sectors will be the following: for the Basic Resources – the MoM electricity consumption of the Basic 

Resources sector and the CO2 intensity of the Steel sector; for the Construction & Materials sector 

– the MoM electricity consumption of the Construction & Materials sector and the CO2 intensity of 

the Cement sector; for the Chemicals sector – the MoM electricity consumption of the Chemicals 

sector and the forward energy price change. 

 

In short, it is possible to conclude that that the month-over-month change in Swedish industrial 

electricity consumption accompanied by the CO2 intensity or occasionally by the forward energy 

price change, explains Swedish industrial sectors’ stock returns. 

 

A comparative graph of the t-statistic of MoM Electricity Consumption variable obtained by 

regressing the models for Italy and Sweden is presented in the figure below: 

FIGURE 26 T-Statistic of MoM Electricity Consumption in Italy and Sweden in regression models. Represents 

the t-statistic of the electricity consumption variable, month-over-month data, obtained by regressing 14 models 
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on Italian and Swedish data. Lines relative to the confidence intervals (90%, 95% and 99%). Dots relative to the 
values of Italian and Swedish electricity consumption. 

 
 

3.2.2. Year-over-year data 

  
Like for the MoM data, the analysis on the year-over-year data is divided in two steps: first, the 

regressions with only energy efficiency measures are tested and one, if any, energy efficiency 

measure chosen to be used in further tests. Once again, the contemporaneous use of the energy 

efficiency measures is impossible due to the high correlation between them. After that the forward 

energy price change variable is added to the regression and the second test is performed. 

 

 

Table 75: OLS Regressions: YoY Stock Returns of Basic Resources, Construction 
& Materials and Chemicals sectors against the YoY Electricity of Steel, Cement and 

Chemicals sectors and energy efficiency measures. 
 
 

Y1t is YoY Swedish Basic Resources Stock Return at time t,  

XYoYECS(t-1) is YoY Electricity Consumption of Basic Resources sector at time (t-1);  

xPMEnInt(t-1) is the Energy intensity of Basic Metals sector (koe/EURO 2015) at time (t-1);  

xUConsS(t-1) is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time (t-1); 

xCO2Steel(t-1) is the Intensity of CO2 emissions of Steel sector (tCO2/t) at time (t-1). 

 
Model 1: Yt = β0 + β1 xYoYECS(t-1) + εt 

 
Model 2: Yt = β0 + β1 xYoYECS(t-1) + β2 xPMEnInt(t-1) + εt 

 
Model 3: Yt = β0 + β1 xYoYECS(t-1) + β3 xUConsS(t-1) + εt 

 

Model 4: Yt = β0 + β1 xYoYECS(t-1) + β4 xCO2Steel(t-1) + εt 

 

Y2t is YoY Swedish Construction & Materials Stock Return at time t,  

xYoYECCem(t-1) is YoY Electricity Consumption of Construction & Materials sector at time (t-4);  

xNMNEnInt(t-1) is the Energy intensity of Non-Metal Mineral sector (koe/EURO 2015) at time (t-1); 

xUConsC(t-1) is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time (t-1); 

xCO2Cement(t-1) is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time (t-1). 

 
 
Model 5: Yt = β0 + β1 xYoYECCem(t-1) + εt 

 
Model 6: Yt = β0 + β1 xYoYECCem(t-1) + β2 xNMMEnInt(t-1) + εt 

 
Model 7: Yt = β0 + β1 xYoYECCem(t-) + β3 xUConsC(t-1) + εt 

 

Model 8 : Yt = β0 + β1 xYoYECCem(t-1) + β4 xCO2Cement(t-1) + εt 

 

 
Y3t is YoY Swedish Chemicals Stock Return at time t, 

xYoYECChem(t-1) is YoY Electricity Consumption of Chemical sector at time (t-1);  

xChemEnInt(t-1) is the Energy intensity of Chemicals sector (koe/EURO 2015) at time (t-1);  

xCO2Chem(t-1) is the Intensity of CO2 emissions of Chemicals sector (kCO2/EURO 2015) at time (t-1). 

 
Model 9: Yt = β0 + β1 xYoYECChem(t-1) + εt 

 
Model 10: Yt = β0 + β1 xYoYECChem(t-1) + β2 xChemEnInt(t-1)+ εt 

 
Model 11: Yt = β0 + β1 xYoYECChem(t-1) + β4 xCO2Chem(t-1) + εt 
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The table describes the results of the OLS regressions performed on the following variables: the year-over-year Basic 
Resources stock return corrected for inflation, the year-over-year Construction & Materials stock return corrected for inflation, 
the year-over-year Chemicals stock return corrected for inflation; the year-over-year electricity consumption of Basic Resources 
sector lagged by one month, the year-over-year electricity consumption of Construction & Materials sector lagged by one month, 
the year-over-year electricity consumption of Chemicals sector lagged by one month, and the energy efficiency measures: the 
value-added energy intensity of Primary Metals sector lagged by one month, the physical energy intensity of Steel sector lagged 
by one month, the physical CO2 emissions intensity of Steel sector lagged by one month, the value-added energy intensity of 
Non-metal Minerals sector lagged by one month, the physical electricity intensity of Cement sector lagged by one month, the 
physical CO2 emissions intensity of Cement sector lagged by one month, the value-added energy intensity of Chemicals sector 
lagged by one month, the value-added CO2 emissions intensity of Chemicals lagged by one month. Sample period: Jan 2010 
– Dec 2019. 

 
 
The table above shows a different situation with respect to the same table for the month-over-month 

data: while the electricity consumption variable is always statistically significant in explaining the 

Swedish Basic Resource stock returns with the positive sign (as expected), the electricity 

consumption of Construction & Materials sector is only weakly significant and only if combined with 

the value-added energy intensity. Besides, the sign (negative) of EC is reversed with respect to the 

theoretical setting. The electricity consumption of the Chemicals sector is never significant. However, 

all the significant energy efficiency measures have positive coefficients – consistent with the 

theoretical setting and meaning that the energy efficiency for those industrial sectors increases. The 

reason for that can be found in the logic of market valuation: the stock price increases if the 

productivity of a sector increases combined with the increase in the energy efficiency. An increase 

in the productivity is not accompanied by the investment in more efficient equipment and more 

sustainable production process - this indicates that the perspectives for the future growth are not 

good. If the sector has reached a certain level of energy efficiency and remains stable at it for a 

certain period (all Swedish industrial sectors made little progress from the point of view of energy 

efficiency in the period 2009-2020), the market values this sector as stagnant with low growth 

potential. The energy efficiency does not increase sufficiently (the energy/CO2 intensities do not 

decrease sufficiently), hence, the market values it negatively. So, the chain of impacts is the 
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following: the increase in electricity consumption (decrease in YoY change) is not accompanied by 

the sufficient increase in energy efficiency because the production does not grow sufficiently fast, 

thus, even if the productivity grows a little, the market forms negative impression with respect to the 

perspectives of future product and reduces the stock price. That is why the electricity consumption 

of the Construction & Materials sector has a negative regression coefficient and the value-added 

energy efficiency has a positive sign. This is the same result as for the YoY data of Italian 

Construction & Materials sector. This is not surprising given that the two sectors are similar in a 

variety of aspects already mentioned at the beginning of this chapter. Also, both sectors are not 

highly performing from the point of view of energy efficiency showing only a slight upward trend in 

its growth which is more visible at the month-over-month level. At the year-over-year level the 

increase in energy input is not even enough to maintain the production at the same level as before. 

The energy efficiency is getting reduced gradually (energy intensity increases together with the 

energy input). So, the market reacts negatively to this dynamic.  

 

The only energy efficiency measure which improves the performance of the model in which it is 

included, is the value-added energy intensity of the Non-Metallic Minerals sector added to model 6. 

It makes the model highly significant and the adjusted R2 positive (11,2%), hence, it will be retained 

in the model. The intensities of the Chemicals sector are not significant in the regressions. Only the 

value-added CO2 intensity of the Chemicals sector is significant at 15% level and has a positive 

sign, but it does not improve the adjusted R2 of the model.  Therefore, the energy efficiency 

measures of the Chemicals sector are not considered for further analysis. 

 

The electricity consumption variable of the Basic Resources and Chemicals sector presents the 

expected positive sign, being statistically significant only for the Basic Resources sector. The fact 

that the electricity consumption of the Chemicals sector is not significant could again be explained 

by the fact that many industrial sectors in Sweden are highly energy efficient (the most prominent 

improvement of energy efficiency occurred before 2009; Chemicals is very virtuous from the point of 

view of the level of energy efficiency) but have no strong incentive to continue the improvement of 

energy efficiency. Chemicals’ electricity consumption and its energy efficiency (see for example 

Figure 25) move very little at yearly level in the long run (fast important oscillations are still present 

at monthly level). Hence, the trend is valued by the market as stagnant and difficult to interpret. 

 

What follows is the regression analysis of the sector stock returns (Basic Resources, Construction 

& Materials, Chemicals) vs the relative year-over-year electricity consumption with the chosen 

energy efficiency measures, if any, and the forward energy price change.  
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Table 76: OLS Regressions: YoY Stock Returns of Basic Resources, Construction 
& Materials and Chemicals sectors against their YoY Electricity Consumption 
variables with chosen energy efficiency measures, YoY forward energy price 

change. 
 

Y1t is YoY Swedish Basic Resources Stock Return at time t, 

xYoYECS(t-1) is YoY Electricity Consumption of Basic Resources sector at time (t-1);  

xYoYEP(t-1) is the YoY Forward Energy Price variation at time (t-1); 

 

 
Model 12: Yt = β0 + β1 xYoYECS(t-1) + β3 xYoYEP(t-1) + εt 
 

 
Y2t is YoY Swedish Construction & Materials Stock Return at time t, 

xYoYECCem(t-1) is YoY Electricity Consumption of Construction & Materials sector at time (t-1);  

xCO2Cement(t-1) is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time (t-1); 

xYoYEP(t-1) is the YoY Forward Energy Price variation at time (t-1). 

 
 

Model 13: Y2t = β0 + β1 xYoYECCem(t-1) + β2 xCO2Cement(t-1) + β3 xYoYEP(t-1) + εt 
 

 
Y3t is YoY Chemicals Stock Return at time t, 

xYoYECChem(t-1) is YoY Electricity Consumption of Chemical sector at time (t-1);  

xYoYEP(t-1) is the YoY Forward Energy Price variation at time (t-1). 

 
 
Model 14: Y3t = β0 + β1 xYoYECChem(t-1) + β3 xYoYEP(t-1) + εt 

 

 

 

 

The table describes the results of the OLS regressions performed on the following variables: the year-over-year stock return of 

the Basic Resources sector corrected for inflation, the year-over-year stock return of the Construction & Materials sector 

corrected for inflation, the year-over-year stock return of the Chemicals sector correct for inflation, the year-over-year change 
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of the electricity consumption of the Steel sector lagged by one month, the year-over-year change of the electricity consumption 

of the Cement sector lagged by one month, the year-over-year change of the electricity consumption of the Chemical sector 

lagged by one month, the CO2 intensity of the Cement sector lagged by one month, the year-over-year forward energy price 

change lagged by one month. The Sample period: Jan 2010 – Dec 2019. 

 

The table above shows that the forward energy price change contributes to the improvement of the 

predictor power of Construction & Materials and Chemicals sectors. Besides, the sign of the 

coefficient is positive which means that the increase in the forward energy price does not boost the 

energy efficiency of this industrial sector under consideration which remains stagnant but directly 

boosts the sector productivity through the forced increase of energy input. The producers decide to 

produce more today rather than tomorrow after learning the news about the future increase in energy 

prices. The Basic Resources sector does not react to the changes in forward energy price because 

it may mitigate its impact by upscaling the production or by transferring the costs further to the 

intermediate or final consumers. Basic Resources sector is very energy-intensive by the value-added 

of its production increases more than proportionally with respect to the used electricity. So, it may 

mitigate the rise in the future price of electricity quite successfully. 

 

In conclusion, it is necessary to say that the tests on Swedish data produced similar results with 

respect to the Italian data. The main result remains the same: the electricity consumption variable 

and energy efficiency measures are significant in explanation of stock returns. If used in a single-

factor regression, the YoY sector electric energy variable is always significant in explaining the 

variation in Swedish sector stock prices (except for the Swedish Chemicals sector). This result is the 

same as for the tests on the MoM data, where also the electricity consumption of the Chemicals 

sector was statistically significant. If the electricity consumption is further adjusted by energy 

efficiency measures and/or the forward energy price change the inference results improve. The 

coefficient of determination increases visibly. The least energy efficient sector out of the three under 

consideration, the Construction & Materials sector, reacts to the changes in the forward energy price 

only at the year-over-year level when the value-added energy intensity is statistically significant. As 

it was mentioned before, at the YoY level the earnings and revenues become more important. Then, 

if the Construction & Materials sector is forced to use more electric energy to produce the same 

amount of input, it becomes particularly sensitive to the changes in energy prices, present and future. 

The energy efficiency level being difficult to raise in short time, the producers prefer to make 

structural changes to their productive facilities and/or upscale the production to mitigate the 

upcoming energy price increase. Therefore, they use more electric energy and produce more. 

Hence, the positive sign of the forward energy price change variable. 

 

A comparative graph, analogous to that of the month-over-month data, of the t-statistic of YoY 

Electricity Consumption variable obtained by regressing the models for Italy and Sweden is 

presented in the figure below: 
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FIGURE 27 T-Statistic of YoY Electricity Consumption in Italy and Sweden in regression models. Represents 

the t-statistic of the electricity consumption variable, year-over-year data, obtained by regressing 14 models on 
Italian and Swedish data. Lines relative to the confidence intervals (90%, 95% and 99%). Dots relative to the 
values of Italian and Swedish electricity consumption. 

 

 

Then, it is possible to confirm once again that in a study of the impact of electricity consumption on 

stock returns the knowledge of the energy efficiency of an energy-intensive industrial sector, 

combined with the availability of energy efficiency measures and the forward energy price series, is 

essential.  
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Table 77: Synthetic representation of the judgment on final regression results on 
MoM and YoY data of Swedish Basic Resources, Construction & Materials and 

Chemicals sectors stock returns, their sector electricity consumption, energy 
efficiency measures, forward energy price. 

 

 
Basic 

Resources 

MoM 

Basic 

Resources 

YoY 

Construction 

& Materials 

MoM 

Construction 

& Materials 

YoY 

Chemicals 

MoM 

Chemicals 

YoY 

Electricity 

Consumption 
✔ ✔ ✔ ✔ ✔ ✔ 

Energy 

Intensity  

value added 

x ✔ x ✔ x x 

Energy 

Intensity 
x x x x x x 

CO2 Intensity ✔ x ✔ x x x 

Fwd Energy 

Price 
x x x ✔ ✔ ✔ 

Adj R2 7,2% 11,7% 3,6% 13,3% 5,4% 1,6% 

 

The table describes the results of the OLS regressions performed on the following variables: the month-over-month and the 

year-over-year stock returns of the Swedish Basic Resources sector corrected for inflation, the month-over-month and the year-

over-year stock return of the Swedish Construction & Materials sector corrected for inflation, the month-over-month and the 

year-over-year stock return of the Swedish Chemicals sector corrected for inflation, the month-over-month change of the 

electricity consumption of the Basic Resources sector lagged by three months, the month-over-month change of the electricity 

consumption of the Construction & Materials sector lagged by four months, the month-over-month change of the electricity 

consumption of the Chemicals sector lagged by six months, the year-over-year change of the electricity consumption of the 

Basic Resources sector lagged by one month, the year-over-year change of the electricity consumption of the Construction & 

Materials sector lagged by one month, the physical CO2 intensity of the Basic Resources sector lagged by three months, the 

physical CO2 intensity of the Cement sector lagged by one and four months, the month-over-month forward energy price change 

lagged by six months, the year-over-year forward energy price change lagged by one month. The Sample period for MoM: Feb 

2009 – Dec 2019, for YoY: Jan 2010 – Dec 2019. 

 

The table above shows that the Swedish market pays most attention to the electricity consumption 

variable, the value-added energy intensity, and the CO2 intensity in evaluating the industrial stock 

returns. If the energy efficiency measures do not convey clear information, the market relies on the 

forward energy price change. The physical energy intensity is the measure which is the least 

important for the market in making decisions on the growth potential of this or that industrial sector.  

 

If the results of the above table are compared to those of the analogous Table 53 for the Italian data, 

it is evident that the Italian energy-intensive sectors, which at the beginning of the sample period are 

at a lower energy efficiency level with respect to Sweden, are forced by the European climate policies 

and the competitors to improve the relative energy efficiency rapidly in a pronounced way. The 

market notices these improvements by considering the values of the energy intensities. The only 
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Italian sector whose energy efficiency is high is the Chemical sector. Therefore, the electricity 

consumption of this sector already incorporates the information which could be added by the energy 

intensities. So, the market values the sector CO2 intensity and the reaction to the change in forward 

energy price and the change in carbon prices instead. This is similar to what happens in Sweden. 

 

All the results described above are consistent with the energy efficiency situation of the industrial 

sectors in Sweden and in Italy. Hence, the regression results should be considered reliable. 
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Conclusion.  
 
On the basis of the concept of entropy in the production process - not all the energy is used to 

produce the useful output but a part of it gets wasted and even pollutes the environment - the present 

research elaborated a two-period version of a dual-output model (with desired, neoclassical output, 

and undesired, CO2 emissions, output) of the production process in order to derive a simple 

expression for a stock return. Using the derived theoretical model, the thesis tests empirically the 

impact of the industrial electricity consumption growth on the sector stock returns of three energy-

intensive industrial sectors (Basic Resources, Construction & Materials, Chemicals) based on Italian 

and Swedish data. The model is in simplified form, not considering labour and capital, for the 

feasibility of econometric analysis. By following the idea by Burnside et al. (1995) [BER 95] that the 

“line speed”, the intensity of the use of machinery in production process, should enter the production 

function, also here similar variables expressed as energy and CO2 emissions intensities are added 

to the model. These variables are commonly considered as energy efficiency measures which may 

vary throughout the sample period. The model by BER 95 was then modified to account for time-

varying coefficients and the side-production of CO2 emissions resulting from the use of energy input.  

 

The results of this research on industrial electricity consumption growth rates referred to Italian and 

Swedish energy-intensive industrial sectors and their role in asset pricing are encouraging. All the 

used variables are significant in explaining industrial stock returns. They confirm the results obtained 

by one of the reference articles of this research, Da Zhi et al (2017), for the US data: the industrial 

electricity consumption variable (its year-over-year change) does influence the industrial stock 

returns and does so with significant predictive power. Besides, the tests on the month-over-month 

data confirm the general tendency introduced by Da Zhi. 

 

The results of the research are analysed from the perspective of interactions between the electricity 

consumption and energy efficiency (product or value-added per unit of energy used, i.e. a definition 

of productivity). Following a production-based theory, productivity is then considered by the stock 

market for the setting of the sector stock price and the decision on the size of the risk premium to 

apply to the stock returns. 

 

The investigation of the way by which the electricity consumption influences the stock returns gave 

the expected result: it happens through the impact on the productivity which then influences the 

financial values such as the book-to-market ratio and the price-earnings ratio. The relative tests on 

the Italian data showed that these ratios are explained by the sector electricity consumption together 

with the energy efficiency variables and occasionally by the changes in forward energy and carbon 

price. This result is true for the Italian Basic Resources and the Italian Chemicals sectors. The Italian 
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Construction & Materials sector, being the least energy efficient sector under consideration, needs 

the financial ratios for the explanation of the relative stock returns as the stock market of the sector 

apparently does not appreciate the information content of energy input data. The electricity 

consumption variable itself proved to be significant in the explanation of both Italian and Swedish 

stock returns in both month-over-month and year-over-year tests. The sign of the regression 

coefficient was generally as expected with some rare exceptions: the Italian Chemicals sector, which 

presents a very high growth in energy efficiency, and the Italian and Swedish Construction & 

Materials sectors, which in turn are the least energy efficient sectors under consideration. The first 

case is the best proof of the principle of energy efficiency: the industrial sector manages to produce 

bigger quantity of product using smaller amount of energy input. The second case is the opposite – 

lagging behind the pace of the energy efficiency: the industrial sector uses bigger amount of energy 

input to produce even smaller amount of product than before. 

 

The energy and CO2 intensities, which are closely related to each other, interact with the general 

energy efficiency of the industrial sector and generally behave as expected in explaining the sector 

stock return. The empirical analysis shows an exception when the industrial sector improves the 

energy efficiency very rapidly. In this case the energy efficiency measures present some unexpected 

regression signs but be still statistically significant in explaining the sector stock returns. It can also 

happen that the industrial sector (Chemicals sector in Italy) improves its energy efficiency at such a 

high speed that the electricity consumption variable already includes all the information on the energy 

efficiency and no energy or CO2 intensities are needed for the explanation of industrial stock returns. 

Another special case is when the industrial sector is not virtuous from the point of view of energy 

efficiency (Construction & Materials sectors in Sweden). The energy efficiency measures feature 

unexpected signs but are statistically significant in the regressions. In this case the energy and CO2 

intensities exercise their correcting effect: the increase in electricity usage is not translated 

proportionally to the increase in productivity but is reduced due to the low energy efficiency of the 

industrial sector. 

 

The sign of the regression coefficients of the energy efficiency measures remains the same for each 

Italian industrial sector no matter whether the month-over-month or the year-over-year data is used 

(apart from the Italian Chemicals sector which is abnormally energy efficient with respect to other 

two Italian industrial sectors). This means that the correcting impact of these intensities is stable and 

strong. The same result is true for the Swedish data: MoM and YoY tests feature the same sign of 

the coefficients of the energy efficiency measures. It is reversed with respect to Italy due to a different 

energy efficiency situation of Swedish industrial sectors (generally higher than in Italy) combined 

with the low speed of improvement of Swedish sector energy efficiency after 2009. 
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Based on the empirical tests, the model also includes the forward energy price change as an 

explanatory variable. The carbon price change, which was added to the Italian regression models 

without it being part of the solution to the energy-centred production problem, was aimed at checking 

the reliability of the theoretical setting applied to the Italian industrial sectors. Theoretically the carbon 

price, as well as the forward energy price, negatively impacts the productivity of the sector and, 

hence, urges the improvement of energy efficiency to mitigate this impact. It is important to 

remember that being more energy efficient is favourable both from the point of view of productivity, 

which is getting increased, and from the point of view of the reduction of CO2 emissions. This theory 

was checked with some unexpected results. While the forward energy price change behaved mainly 

as expected, being the booster of energy efficiency (in Italy), the carbon price change was 

counterbalanced by the upscaled production without leading to the improvement of energy efficiency. 

For the Swedish data the same effect was observed for the forward energy price change. This 

concerns mainly the impact of the carbon price change on the stock returns of the Italian Construction 

& Materials (the least energy efficient out of three sectors) and the Italian Chemicals sectors (the top 

energy efficient sector out of three) and the impact of the forward energy price change on the 

Swedish Chemicals sector (the only industrial sector in Sweden which increased its energy 

consumption in the period 2000 – 2018) and the Swedish Construction & Materials sector. 

 

The Italian dataset used in this research gave some important results. All the used variables were 

statistically significant in explaining industrial stock returns. However, the dataset is not large enough 

to confirm the theoretical mechanism which links the variables to stock returns. To enrich the dataset 

and to be able to draw the conclusions the Swedish electricity data were used in the last part of the 

research. The results confirmed all the tendencies that were discovered on the basis of the Italian 

data and added some new insights relative to the country-specific sector energy efficiency situation.  

 

The data relative to other European countries would enlarge the dataset and add robustness to the 

results. Besides, a deeper analysis of the physics of the production process considering labour and 

capital and the multi-staged dynamics would be desirable. All these matters are left for future 

research. 
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APPENDIX A 
 

1. What follows here is the comparison on the trends of the sector electricity consumption and 
the industrial production index in Italy. The sectors under consideration are the energy 
intensive ones which are the object of the analysis of the present thesis (Steel, Non-ferrous 
Metals, Cement and Chemicals). The reference point is the relative average value either of 
2010 or of 2015 which is taken as 100. 

 
1)  Base year 2010 (2010=100) 
 
a) Steel sector 

 

 
FIGURE 8 The trend comparison of the monthly Steel sector electricity consumption and IPI, the monthly Italian 

production index. Trend variation with respect to the average of the base year (2010=100). The orange line refers 
to the IPI index, the blue line refers to the Steel sector electricity consumption. Sample period January 2011 – 
December 2017. Monthly data. 

 
Correlation between the series is 0,93. The series overlap almost perfectly if not for the 
magnitude. 
 



140 
 

b) Non-ferrous Metals sector 

 
FIGURE 9 The trend comparison of the monthly Non-ferrous Metals sector electricity consumption and IPI, the 

monthly Italian production index. Trend variation with respect to the average of the base year (2010=100). The 
orange line refers to the IPI index, the blue line refers to the Non-ferrous Metals sector electricity consumption. 
Sample period January 2011 – December 2017. Monthly data. 

 
Correlation between the series is 0,32. Starting from the year 2012 the series do not 
overlap anymore any show weak correlation. 
 
 
 

c) Cement sector 
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FIGURE 10 The trend comparison of the monthly Cement sector electricity consumption and IPI, the monthly 

Italian production index. Trend variation with respect to the average of the base year (2010=100). The orange line 
refers to the IPI index, the blue line refers to the Cement sector electricity consumption. Sample period January 
2011 – December 2017. Monthly data. 

 
Correlation between the series is 0,62 which means that the series do not overlap but 
follow the same trend over the whole sample period. The correlation value is significant 
in this case. 
 
 

d) Chemicals sector 
 

 
FIGURE 11 The trend comparison of the monthly Chemicals sector electricity consumption and IPI, the monthly 

Italian production index. Trend variation with respect to the average of the base year (2010=100). The orange line 
refers to the IPI index, the blue line refers to the Chemicals sector electricity consumption. Sample period January 
2011 – December 2017. Monthly data. 

 
Correlation between the series is 0,46. This value is borderline. 
 

The visual overlapping graphs and the correlation values show that if year 2010 is considered as the 
base year, then it is mostly the Steel sector electricity consumption that tracks the industrial 
production index in Italy for the period between 2011 and 2018. However, the results for the Cement 
sector and the Chemicals sector deserve attention because the correlation is visible. 
 
 
 
 
 
 

2) Base year 2015 (2015=100) 
 
e) Steel sector 
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FIGURE 12 The trend comparison of the monthly Steel sector electricity consumption and IPI, the monthly 

Italian production index. Trend variation with respect to the average of the base year (2015=100). The orange line 
refers to the IPI index, the blue line refers to the Steel sector electricity consumption. Sample period January 2016 
– May 2020. Monthly data. 

 
Correlation between the series is 0,93. As for the base year 2010, the series overlap 
almost perfectly. 
 

f) Non-ferrous Metals sector 
 

 
FIGURE 13 The trend comparison of the monthly Non-ferrous Metals sector electricity consumption and IPI, 

the monthly Italian production index. Trend variation with respect to the average of the base year (2015=100). 
The orange line refers to the IPI index, the blue line refers to the Non-ferrous Metals sector electricity consumption. 
Sample period January 2016 – May 2020. Monthly data. 
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Correlation between the series is 0,76. This result is very different from the previous case 
with 2010 as the base year. The series are highly correlated. 
 

g) Cement sector 

 
FIGURE 14 The trend comparison of the monthly Cement sector electricity consumption and IPI, the monthly 

Italian production index. Trend variation with respect to the average of the base year (2015=100). The orange line 
refers to the IPI index, the blue line refers to the Cement sector electricity consumption. Sample period January 
2016 – May 2020. Monthly data. 

 
Correlation between the series is 0,81. This value is much higher than for the previous case with 
2010 as the base year. 

 
h) Chemicals sector 

 

 
FIGURE 15 The trend comparison of the monthly Chemicals sector electricity consumption and IPI, the monthly 

Italian production index. Trend variation with respect to the average of the base year (2015=100). The orange line 
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refers to the IPI index, the blue line refers to the Chemicals sector electricity consumption. Sample period January 
2016 – May 2020. Monthly data. 

 
Correlation between the series is 0,64. Also for the Chemicals sector the correlation value has 
increased with respect to the previous case. 

 
If the base year is 2015 and the period is 2016-2020, then the correlation between the series is 
significantly higher with respect to the period 2011-2017 base year 2010, and now it is not only the 
Steel sector electricity consumption which tracks the industrial production index, but the electricity 
consumption of all the four energy intensive sectors which are used in the analysis. The correlation 
values are always higher than 0,6. 
 
Whatever year is taken as the base year, it is possible to state that the correlation between the 
industrial electricity consumption and the industrial production is clearly visible. Therefore, the 
electricity consumption variable is rightfully tested as the predictor of industrial sector stock returns 
considering its impact on the industrial production. 
 
 

 
 

FIGURE 16 Energy Consumption of Italian industrial sectors (Mtoe). Yearly data. Sample period 2000 – 2019.  
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FIGURE 17 Energy Consumption of Swedish industrial sectors (Mtoe). Comparison 2000 - 2018.  

 
 

2. Graphical comparison of energy efficiency measures of Italy and 
Sweden (lower values indicate higher energy efficiency): 

 

 
FIGURE 18 Energy Intensity, value-added; of Italian and Swedish Primary Metals industrial sectors. Indicate 

the quantity of used energy (koe) per 1€ of production value measured in Euro 2015. Yearly data. Sample period 
2000 – 2020.  
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FIGURE 19 Energy Intensity, value-added; of Italian and Swedish Non-Metallic Minerals industrial sectors. 

Indicate the quantity of used energy (koe) per 1€ of production value measured in Euro 2015. Yearly data. Sample 
period 2000 – 2020.  

 

 
 

FIGURE 20 Energy Intensity, value-added; of Italian and Swedish Chemicals industrial sectors. Indicate the 

quantity of used energy (koe) per 1€ of production value measured in Euro 2015. Yearly data. Sample period 
2000 – 2020.  

 
 

FIGURE 21 Energy Intensity, per ton of product, of Italian and Swedish Steel industrial sectors. Indicate the 

quantity of used energy (toe) per one ton of production. Yearly data. Sample period 2000 – 2020.  
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FIGURE 22 Energy Intensity, per ton of product, of Italian and Swedish Cement industrial sectors. Indicate the 

quantity of used energy (toe) per one ton of production. Yearly data. Sample period 2000 – 2020.  
 
 

 

 
FIGURE 23 CO2 Intensity, per ton of product, of Italian and Swedish Cement industrial sectors. Indicate the 

quantity of CO2 emissions (tCO2) per one ton of production. Yearly data, base year 2009. Sample period 2000 – 
2020.  

 

 
FIGURE 24 CO2 Intensity, per ton of product, of Italian and Swedish Steel industrial sectors. Indicate the 

quantity of CO2 emissions (tCO2) per one ton of production. Yearly data, base year 2009. Sample period 2000 – 
2020.  
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FIGURE 25 CO2 Intensity, value added, of Italian and Swedish Chemicals industrial sectors. Indicate the 

quantity of CO2 emissions (tCO2) per 1€ of production value measured in Euro 2015. Yearly data, base year 
2009. Sample period 2000 – 2020.  
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APPENDIX B 
 

Correlation matrices with all the variables used in the analysis of the three energy-intensive 
industrial sectors (Basic Resources, Construction & Materials, Chemicals): 
 
ITALY: 

 
Basic Resources: 
 

Table 27: Correlation Matrix of MoM Basic Resources Return, MoM electricity 

consumption variables of Steel and Non-ferrous Metals sectors, the energy 

efficiency measures, MoM forward energy price change, MoM carbon permits’ price 

change and book-to-market and price-earnings ratios. 

 
The table describes the correlations between the following variables: the month-over-month stock return of the Basic Resources sector 

corrected for inflation, the month-over-month change of the electricity consumption of the Steel sector lagged by six months, the month-

over-month change of the electricity consumption of the Non-ferrous Metals sector lagged by six months, the value-added energy intensity 

of the Primary Metals sector lagged by six months, the physical energy intensity of the Steel sector lagged by six months, the physical 

CO2 emissions intensity of the Steel sector lagged by six months, the month-over-month change in forward energy price lagged by five 

months, the month-over-month change in carbon permits’ price lagged by five months, the book-to-market ratio of the Metals sector lagged 

by six months, the price-earnings ratio of the Metals sector lagged by six months.  

 

Table 28: Correlation Matrix of YoY Basic Resources Return, YoY electricity 

consumption variables of Steel sector, the energy efficiency measures, YoY 

forward energy price change, YoY carbon permits’ price change and book-to-

market and price-earnings ratios. 

 

 
The table describes the correlations between the following variables: the year-over-year stock return of the Basic Resources sector 

corrected for inflation, the year-over-year change of the electricity consumption of the Steel sector lagged by one month, the value-added 

energy intensity of the Primary Metals sector lagged by one month, the physical energy intensity of the Steel sector lagged by one month, 
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the physical CO2 emissions intensity of the Steel sector lagged by one month, the year-over-year forward energy price change lagged by 

one month, the year-over-year change in carbon permits’ price lagged by one month, the book-to-market ratio of the Metals sector lagged 

by one month, the price-earnings ratio of the Metals sector lagged by one month.  

 
 

 
Construction & Materials: 
 

Table 29: Correlation Matrix of MoM Construction & Materials Return, MoM 

electricity consumption variables of Cement, the energy efficiency measures, MoM 

forward energy price change, MoM carbon permits’ price change and book-to-

market and price-earnings ratios. 

 
 
The table describes the correlations between the following variables: the month-over-month stock return of the Construction & Materials 

sector corrected for inflation, the month-over-month change of the electricity consumption of the Cement sector lagged by three months, 

the value-added energy intensity of the Non-Metallic Mineral sector lagged by three months, the physical electricity intensity of the Cement 

sector lagged by three months, the physical CO2 emissions intensity of the Cement sector lagged by three months, the month-over-month 

change in forward energy price lagged by four months, the month-over-month change in carbon permits’ price lagged by one month, the 

book-to-market ratio of the Cement sector lagged by three months, the price-earnings ratio of the Cement sector lagged by three months.  

 

Table 30: Correlation Matrix of YoY Construction & Materials Return, YoY electricity 

consumption variables of Cement, the energy efficiency measures, YoY forward 

energy price change, YoY carbon permits’ price change and book-to-market and 

price-earnings ratios. 

 

 
The table describes the correlations between the following variables: the year-over-year stock return of the Construction & Materials sector 

corrected for inflation, the year-over-year change of the electricity consumption of the Cement sector lagged by one month, the value-

added energy intensity of the Non-Metallic Mineral sector lagged by one month, the physical electricity intensity of the Cement sector 

lagged by one month, the physical CO2 emissions intensity of the Cement sector lagged by one month, the year-over-year change in 

forward energy price change lagged by one month, , the year-over-year change in carbon permits’ price lagged by one month, the book-

to-market ratio of the Cement sector lagged by one month, the price-earnings ratio of the Cement sector lagged by one month.  
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Chemicals: 
 

Table 31: Correlation Matrix of MoM Chemicals Return, MoM electricity 

consumption variables of Chemicals, the energy efficiency measures, MoM forward 

energy price change, MoM carbon permits’ price change and book-to-market and 

price-earnings ratios. 

 

 
The table describes the correlations between the following variables: the month-over-month stock return of the Chemical sector corrected 
for inflation, the month-over-month change of the electricity consumption of the Chemical sector lagged by one month, the value-added 
energy intensity of the Chemical sector lagged by one month, the value-added CO2 emissions intensity of the Chemical sector lagged by 
one month, the month-over-month change in forward energy price lagged by five months, the month-over-month change in carbon permits’ 
price lagged by five months, the book-to-market ratio of the Chemical sector lagged by three months, the price-earnings ratio of the 
Chemical sector lagged by one month. 
 

Table 32: Correlation Matrix of YoY Chemicals Return, YoY electricity consumption 

variables of Chemicals, the energy efficiency measures, YoY forward energy price 

change, YoY carbon permits’ price change and book-to-market and price-earnings 

ratios. 

 
 
The table describes the correlations between the following variables: the year-over-year stock return of the Chemical sector corrected for 
inflation, the year-over-year change of the electricity consumption of the Chemical sector lagged by one month, the value-added energy 
intensity of the Chemical sector lagged by one month, the value-added CO2 emissions intensity of the Chemical sector lagged by one 
month, the year-over-year change in forward energy price lagged by one month, , the year-over-year change in carbon permits’ price 
lagged by one month, the book-to-market ratio of the Chemical sector lagged by one month, the price-earnings ratio of the Chemical 
sector lagged by one month. 
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SWEDEN: 
 

Basic Resources: 
 

Table 60: Correlation Matrix of MoM Basic Resources Return, MoM electricity 

consumption variables of Basic Resources sector, the energy efficiency measures 

and MoM forward energy price change. 

 

 
 
The table describes the correlations between the following variables: the month-over-month stock return of the Swedish Basic Resources 

sector corrected for inflation, the month-over-month change of the electricity consumption of the Basic Resources sector lagged by three 

months, the value-added energy intensity of the Primary Metals sector lagged by three months, the physical energy intensity of the Steel 

sector lagged by three months, the physical CO2 emissions intensity of the Steel sector lagged by three months, the month-over-month 

change in forward energy price lagged by three months.  

 

Table 61: Correlation Matrix of YoY Basic Resources Return, YoY electricity 

consumption variables of Basic Resources sector, the energy efficiency measures 

and YoY forward energy price change. 

 
The table describes the correlations between the following variables: the year-over-year stock return of the Swedish Basic Resources 

sector corrected for inflation, the year-over-year change of the electricity consumption of the Basic Resources sector lagged by one month, 

the value-added energy intensity of the Primary Metals sector lagged by one month, the physical energy intensity of the Steel sector 

lagged by one month, the physical CO2 emissions intensity of the Steel sector lagged by one month, the year-over-year forward energy 

price change lagged by one month.  

 
Construction & Materials: 
 

Table 62: Correlation Matrix of MoM Construction & Materials Return, MoM 

electricity consumption of Construction & Materials sector, the energy efficiency 

measures, MoM forward energy price change. 
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The table describes the correlations between the following variables: the month-over-month stock return of the Swedish Construction & 

Materials sector corrected for inflation, the month-over-month change of the electricity consumption of the Construction & Materials sector 

lagged by four months, the value-added energy intensity of the Non-Metallic Mineral sector lagged by four months, the physical electricity 

intensity of the Cement sector lagged by four months, the physical CO2 emissions intensity of the Cement sector lagged by four months, 

the month-over-month change in forward energy price lagged by four months.  

 

Table 63: Correlation Matrix of YoY Construction & Materials Stock Return, YoY 

electricity consumption of Construction & Materials sector, the energy efficiency 

measures, YoY forward energy price change. 

 
The table describes the correlations between the following variables: the year-over-year stock return of the Construction & Materials sector 

corrected for inflation, the year-over-year change of the electricity consumption of the Construction & Materials sector lagged by one 

month, the value-added energy intensity of the Non-Metallic Mineral sector lagged by one month, the physical electricity intensity of the 

Cement sector lagged by one month, the physical CO2 emissions intensity of the Cement sector lagged by one month, the year-over-year 

change in forward energy price change lagged by one month.  

 

Chemicals: 
 

Table 64: Correlation Matrix of MoM Chemicals Stock Return, MoM electricity 

consumption of Chemicals sector, the energy efficiency measures, MoM forward 

energy price change. 

 

 
The table describes the correlations between the following variables: the month-over-month stock return of the Swedish Chemical sector 
corrected for inflation, the month-over-month change of the electricity consumption of the Chemical sector lagged by six months, the 
value-added energy intensity of the Chemical sector lagged by six months, the value-added CO2 emissions intensity of the Chemical 
sector lagged by six months, the month-over-month change in forward energy price lagged by one month. 
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Table 65: Correlation Matrix of YoY Chemicals Return, YoY electricity consumption 

variables of Chemicals, the energy efficiency measures, YoY forward energy price 

change, YoY carbon permits’ price change and book-to-market and price-earnings 

ratios. 

 
 
The table describes the correlations between the following variables: the year-over-year stock return of the Chemical sector corrected for 
inflation, the year-over-year change of the electricity consumption of the Chemical sector lagged by one month, the value-added energy 
intensity of the Chemical sector lagged by one month, the value-added CO2 emissions intensity of the Chemical sector lagged by one 
month, the year-over-year change in forward energy price lagged by one month. 
 

 

  



155 
 

APPENDIX C 
 

Table 33: OLS Regressions: MoM Basic Resources Return against the lags of MoM 
Electricity Consumption of Steel sector. 

 
Yt is MoM Basic Resources Stock Return at time t,  

xMoMECS(t-i) is MoM Seasonally Adjusted Electricity Consumption of the Steel sector at time (t-i) where i is the number of months of delay 

(from 1 to 6). 

 
Model: Yt = β0 + β1 xMoMECS(t-i) + εt 

 

 

 
 

The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Basic 
Resources stock return on the lags from one to six months of month-over-month electricity consumption of Steel sector. Sample 
period: Feb 2010 – May 2020. 
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Table 34: OLS Regressions: MoM Basic Resources Stock Return against the lags of 
MoM Electricity consumption of Steel and MoM Electricity Consumption of 

Nonferrous Metals sector. 
 
Yt is MoM Basic Resources Stock Return at time t,  

xMoMECS(t-i) is MoM Seasonally Adjusted Electricity Consumption of the Steel sector at time (t-i) where i is the number of months of delay 

(from 1 to 6); 

xMoMECM(t-i) is MoM Seasonally Adjusted Electricity Consumption of the Nonferrous Metals sector at time (t-i) where i is the number of 

months of delay (from 1 to 6); 

 
Model: Yt = β0 + β1 xMoMECS(t-i) + β2 xMoMECM(t-i) + εt 

  

 

The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Basic 
Resources return corrected for inflation on the lags from one to six months of month-over-month electricity consumption of the 
Steel sector and of month-over-month electricity consumption of the Non-ferrous Metals sector. Sample period: Feb 2010 – 
May 2020. 
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Table 35: OLS Regressions: MoM Construction & Materials Stock Return against 
the lags of MoM Electricity Consumption of Cement sector. 

 

Yt is MoM Construction & Materials Stock Return at time t,  

xMoMECCem(t-i) is MoM Seasonally Adjusted Electricity Consumption of the Cement sector at time (t-i) where i is the number of months of 

delay (from 1 to 6). 

 
Model: Yt = β0 + β1 xMoMECCem(t-i) + εt 

 

 
 
 
 

The Table describes the results of the OLS regressions performed on the following variables: the month-over-month 
Construction & Materials stock return corrected for inflation on the lags from one to six months of month-over-month electricity 
consumption of Cement sector. Sample period: Feb 2010 – May 2020. 
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Table 36: OLS Regressions: MoM Chemicals Return against the lags of MoM 
Electricity Consumption of Chemical sector. 

 

Yt is MoM Chemicals Stock Return at time t,  

xMoMECChem(t-i) is MoM Seasonally Adjusted Electricity Consumption of the Chemicals sector at time (t-i) where i is the number of months of 

delay (from 1 to 6). 

 
Model: Yt = β0 + β1 xMoMECChem(t-i) + εt 

 
 

 
 
 
The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Chemicals 
stock return corrected for inflation on the lags from one to six months of month-over-month electricity consumption of Chemicals 
sector. Sample period: Feb 2010 – May 2020. 
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Table 38: OLS Regressions: MoM Stock Returns of the Basic Resources sector 
against MoM Electricity Consumption of the Steel sector and the lags of MoM 

forward energy price change. 
 
Yt is MoM Basic Resources Stock Return at time t,  

xMoMECS(t-6) is MoM Seasonally Adjusted Electricity Consumption of the Steel sector at time (t-6); 

xMoMPE(t-i) is MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-i) where i is the number of months of 

delay (from 1 to 6). 

 

Model: Yt = β0 + β1 xMoMECS(t-6) + β2 xMoMPE(t-i) + εt 

 
 

 
The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Basic 
Resources stock return corrected for inflation, the month-over-month electricity consumption of the Steel sector lagged by six 
months, the lags from one to six months of month-over-month forward energy price change. Sample period: Feb 2010 – May 
2020. 
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Table 39: OLS Regressions: MoM Stock Returns of the Basic Resources sector 
against MoM Electricity Consumption of the Steel sector and the lags of MoM 

carbon permits’ price change. 
 
Yt is MoM Basic Resources Stock Return at time t,  

xMoMECS(t-6) is MoM Seasonally Adjusted Electricity Consumption of the Steel sector at time (t-6); 

xMoMPCO2(t-i) is MoM Seasonally Adjusted Carbon Permits’ Price variation at time (t-i) where i is the number of months of delay (from 1 to 

6). 

 

Model: Yt = β0 + β1 xMoMECS(t-6) + β2 xMoMPCO2(t-i) + εt 

 

 
 
The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Basic 
Resources stock return corrected for inflation, the month-over-month electricity consumption of the Steel sector lagged by six 
months, the lags from one to six months of month-over-month carbon permits’ price change. Sample period: Feb 2010 – May 
2020. 
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Table 40: OLS Regressions: MoM Stock Returns of the Construction & Materials 
sector against MoM Electricity Consumption of the Cement sector and the lags of 

MoM forward energy price change. 
 

Yt is MoM Construction & Materials Stock Return at time t,  

xMoMECCem(t-3) is MoM Seasonally Adjusted Electricity Consumption of the Cement sector at time (t-3); 

xMoMPE(t-i) is MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-i) where i is the number of months of 

delay (from 1 to 6). 

 

Model: Yt = β0 + β1 xMoMECCem(t-3) + β2 xMoMPE(t-i) + εt 

 

 

 
The Table describes the results of the OLS regressions performed on the following variables: the month-over-month 
Construction & Materials stock return corrected for inflation, the month-over-month electricity consumption of the Cement sector 
lagged by three months, the lags from one to six months of month-over-month forward energy price change. Sample period: 
Feb 2010 – May 2020. 
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Table 41: OLS Regressions: MoM Stock Returns of the Construction & Materials 
sector against MoM Electricity Consumption of the Cement sector and the lags of 

MoM carbon permits’ price change. 
 

Yt is MoM Construction & Materials Stock Return at time t,  

xMoMECCem(t-3) is MoM Seasonally Adjusted Electricity Consumption of the Cement sector at time (t-3); 

xMoMPE(t-i) is MoM Seasonally Adjusted Carbon Permits’ Price variation at time (t-i) where i is the number of months of delay (from 1 to 6). 

 

Model: Yt = β0 + β1 xMoMECCem(t-3) + β2 xMoMPCO2(t-i) + εt 

 

 

 

 
 

The Table describes the results of the OLS regressions performed on the following variables: the month-over-month 
Construction & Materials stock return corrected for inflation, the month-over-month electricity consumption of the Cement sector 
lagged by three months, the lags from one to six months of month-over-month carbon permits’ price change. Sample period: 
Feb 2010 – May 2020. 
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Table 42: OLS Regressions: MoM Stock Returns of the Chemicals sector against 
MoM Electricity Consumption of the Chemicals sector and the lags of MoM forward 

energy price change. 
 

Yt is MoM Chemicals Stock Return at time t,  

xMoMECChem(t-1) is MoM Seasonally Adjusted Electricity Consumption of the Chemicals sector at time (t-1); 

xMoMPE(t-i) is MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-i) where i is the number of months of 

delay (from 1 to 6). 

 

Model: Yt = β0 + β1 xMoMECChem(t-1) + β2 xMoMPE(t-i) + εt 

 

 

 
 

The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Chemicals 
stock return corrected for inflation, the month-over-month electricity consumption of the Chemicals sector lagged by one month, 
the lags from one to six months of month-over-month forward energy price change. Sample period: Feb 2010 – May 2020. 
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Table 43: OLS Regressions: MoM Stock Returns of the Chemicals sector against 
MoM Electricity Consumption of the Chemicals sector and the lags of MoM carbon 

permits’ price change. 
 

Yt is MoM Chemicals Stock Return at time t,  

xMoMECChem(t-1) is MoM Seasonally Adjusted Electricity Consumption of the Chemicals sector at time (t-1); 

xMoMPCO2(t-i) is MoM Seasonally Adjusted Carbon Permits’ Price variation at time (t-i) where i is the number of months of delay (from 1 to 

6). 

 

Model: Yt = β0 + β1 xMoMECChem(t-1) + β2 xMoMPCO2(t-i) + εt 

 
 
 

 
 

The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Chemicals 
stock return corrected for inflation, the month-over-month electricity consumption of the Chemicals sector lagged by one month, 
the lags from one to six months of month-over-month carbon permits’ price change. Sample period: Feb 2010 – May 2020. 
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Table 45: OLS Regressions: MoM Stock Returns of Construction & Materials sector 
against the MoM Electricity of Cement sector, energy efficiency measure (CO2 

intensity), forward energy price change and carbon permits’ price change. 
 

Yt is MoM Construction & Materials Stock Return at time t, 

xMoMECCem(t-3) is MoM Seasonally Adjusted Electricity Consumption of Cement sector at time (t-3);  

xCO2Cement(t-3) is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time (t-3); 

xMoMEP(t-4) is the MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-4); 

xMoMPCO2(t-1) is MoM Seasonally Adjusted Carbon Permits’ Price variation at time (t-1). 
 
Model 1: Y2t = β0 + β1 xMoMECCem(t-3) + β2 xCO2Cement(t-3) + β3 xMoMEP(t-4) + β4 xMoMPCO2(t-1) + εt 

 

 

 

 

 

 

 
The table describes the results of the OLS regressions performed on the following variables: the month-over-month stock return 

of the Construction & Materials sector corrected for inflation, the month-over-month change of the electricity consumption of the 

Cement sector lagged by three months, the CO2 emissions intensity of the Cement sector, the month-over-month forward 

energy price change lagged by four months, the month-over-month carbon permits’ price change lagged by one month . The 

Sample period: Feb 2010 – May 2020. 
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Table 46: OLS Regressions: YoY Stock Returns of the Construction & Materials 
sector against the lags of the YoY Electricity Consumption of the Cement sector. 

 

Yt is YoY Chemicals Stock Return at time t,  

xYoYECCem(t-1) is YoY Electricity Consumption of the Cement sector at time (t-i) where i is the number of months of delay (from 1 to 6).  

 

Model: Yt = β0 + β1 xYoYECCem(t-i) + εt 

 

 

 
The Table describes the results of the OLS regressions performed on the following variables: the year-over-year Construction 
& Materials stock return corrected for inflation, the lags from one to six months of the year-over-year electricity consumption of 
the Cement sector. Sample period: Feb 2011– May 2020. 
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Table 49: OLS Regressions: YoY Stock Returns of Basic Resources sector against 
the YoY Electricity of Steel sector with energy efficiency measure (CO2 intensity), 

forward energy price change. 
 

Yt is YoY Construction & Materials Stock Return at time t, 

xYoYECCem(t-1) is YoY Electricity Consumption of Cement sector at time (t-1);  

xCO2Cement(t-1) is the Intensity of CO2 emissions of Cement sector (tCO2/t) at time (t-1); 

xYoYEP(t-1) is the YoY Forward Energy Price variation at the MTE market at time (t-1). 

 
Model 1: Y2t = β0 + β1 xYoYECCem(t-1) + β2 xCO2Cement(t-1) + β3 xYoYEP(t-1) + εt 

 

 

 

 

The table describes the results of the OLS regressions performed on the following variables: the year-over-year stock return of 

the Basic Resources sector corrected for inflation, the year-over-year change of the electricity consumption of the Steel sector 

lagged by one month, the CO2 emissions intensity of Steel sector lagged by one month, the year-over-year forward energy 

price change lagged by one month, the year-over-year carbon permits’ price change lagged by one month. The Sample period: 

Feb 2011 – May 2020. 
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Table 66: OLS Regressions: MoM Swedish Basic Resources Stock Return against 
the lags of MoM Electricity Consumption of Basic Resources sector. 

 
Yt is MoM Basic Resources Stock Return at time t,  

xMoMECS(t-i) is MoM Seasonally Adjusted Electricity Consumption of the Basic Resources sector at time (t-i) where i is the number of months 

of delay (from 1 to 6). 

 
Model: Yt = β0 + β1 xMoMECS(t-i) + εt 

 
 

 
 

The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Swedish 
Basic Resources stock return on the lags from one to six months of month-over-month electricity consumption of Basic 
Resources sector. Sample period: Feb 2009 – Oct 2021. 
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Table 67: OLS Regressions: MoM Swedish Construction & Materials Stock Return 
against the lags of MoM Electricity Consumption of Construction & Materials sector. 
 

Yt is MoM Construction & Materials Stock Return at time t,  

xMoMECCem(t-i) is MoM Seasonally Adjusted Electricity Consumption of the Construction & Materials sector at time (t-i) where i is the number 

of months of delay (from 1 to 6). 

 
Model: Yt = β0 + β1 xMoMECCem(t-i) + εt 

 
 
 

 
 

The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Swedish 
Construction & Materials stock return corrected for inflation on the lags from one to six months of month-over-month electricity 
consumption of Cement sector. Sample period: Feb 2009 – Jul 2020. 
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Table 68: OLS Regressions: MoM Swedish Chemicals Return against the lags of 
MoM Electricity Consumption of Chemical sector. 

 

Yt is MoM Chemicals Stock Return at time t,  

xMoMECChem(t-i) is MoM Seasonally Adjusted Electricity Consumption of the Chemicals sector at time (t-i) where i is the number of months of 

delay (from 1 to 6). 

 
Model: Yt = β0 + β1 xMoMECChem(t-i) + εt 

 
 

 
 
The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Chemicals 
stock return corrected for inflation on the lags from one to six months of month-over-month electricity consumption of Chemicals 
sector. Sample period: Feb 2009 – Jul 2020. 
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Table 69: OLS Regressions: MoM Swedish Stock Returns of the Basic Resources 
sector against MoM Electricity Consumption of the Basic Resources sector and the 

lags of MoM forward energy price change. 
 
Yt is MoM Basic Resources Stock Return at time t,  

xMoMECS(t-3) is MoM Seasonally Adjusted Electricity Consumption of the Basic Resources sector at time (t-3); 

xMoMPE(t-i) is MoM Seasonally Adjusted Forward Energy Price variation at time (t-i) where i is the number of months of delay (from 1 to 6). 

 

Model: Yt = β0 + β1 xMoMECS(t-3) + β2 xMoMPE(t-i) + εt 

 
 

 
The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Swedish 
Basic Resources stock return corrected for inflation, the month-over-month electricity consumption of the Basic Resources 
sector lagged by three months, the lags from one to six months of month-over-month forward energy price change. Sample 
period: Feb 2009 – Oct 2021. 
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Table 70: OLS Regressions: MoM Stock Returns of the Swedish Construction & 
Materials sector against MoM Electricity Consumption of the Construction & 

Materials sector and the lags of MoM forward energy price change. 
 

Yt is MoM Construction & Materials Stock Return at time t,  

xMoMECCem(t-4) is MoM Seasonally Adjusted Electricity Consumption of the Construction & Materials sector at time (t-4); 

xMoMPE(t-i) is MoM Seasonally Adjusted Forward Energy Price variation at time (t-i) where i is the number of months of delay (from 1 to 6). 

 

Model: Yt = β0 + β1 xMoMECCem(t-4) + β2 xMoMPE(t-i) + εt 

 

 

 
 

 
 
The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Swedish 
Construction & Materials stock return corrected for inflation, the month-over-month electricity consumption of the Construction 
& Materials sector lagged by four months, the lags from one to six months of month-over-month forward energy price change. 
Sample period: Feb 2009 – Jul 2020. 
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Table 71: OLS Regressions: MoM Stock Returns of the Swedish Chemicals sector 
against MoM Electricity Consumption of the Chemicals sector and the lags of MoM 

forward energy price change. 
 

Yt is MoM Chemicals Stock Return at time t,  

xMoMECChem(t-6) is MoM Seasonally Adjusted Electricity Consumption of the Chemicals sector at time (t-6); 

xMoMPE(t-i) is MoM Seasonally Adjusted Forward Energy Price variation at the MTE market at time (t-i) where i is the number of months of 

delay (from 1 to 6). 

 

Model: Yt = β0 + β1 xMoMECChem(t-6) + β2 xMoMPE(t-i) + εt 

 

 
 

 
 

The Table describes the results of the OLS regressions performed on the following variables: the month-over-month Swedish 
Chemicals stock return corrected for inflation, the month-over-month electricity consumption of the Chemicals sector lagged by 
six months, the lags from one to six months of month-over-month forward energy price change. Sample period: Feb 2009 – Jul 
2020. 
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Table 74: OLS Regressions: MoM Stock Returns of Swedish Basic Resources and 
Swedish Construction & Materials sector against their MoM Electricity 

Consumption, energy efficiency measure (physical energy intensity) and forward 
energy price change. 

 
Y1t is MoM Swedish Basic Resources Stock Return at time t, 

xMoMECS(t-3) is MoM Seasonally Adjusted Electricity Consumption of Basic Resources sector at time (t-3);  

xUConsS(t-3) is the Intensity of Energy Consumption of Steel sector per ton of production (toe/t) at time (t-3); 

xMoMEP(t-3) is the MoM Seasonally Adjusted Forward Energy Price variation at time (t-3). 

 

Model 1: Y1t = β0 + β1 xMoMECCem(t-3) + β2 xUConsS(t-3) + β3 xMoMEP(t-3) + εt 

 

 
Y2t is MoM Swedish Construction & Materials Stock Return at time t, 

xMoMECCem(t-4) is MoM Seasonally Adjusted Electricity Consumption of Construction & Materials sector at time (t-4);  

xUConsC(t-4) is the Intensity of Electricity Consumption of Cement sector per ton of production (kWh/t) at time (t-4); 

xMoMEP(t-4) is the MoM Seasonally Adjusted Forward Energy Price variation at time (t-4). 

 

Model 2: Y2t = β0 + β1 xMoMECCem(t-4) + β2 xUConsC(t-4) + β3 xMoMEP(t-4) + εt 

 

 

 
The table describes the results of the OLS regressions performed on the following variables: the month-over-month stock return 

of the Swedish Basic Resources sector corrected for inflation, the month-over-month stock return of the Swedish Construction 

& Materials sector corrected for inflation, the month-over-month change of the electricity consumption of the Basic Resources 

sector lagged by three months, the month-over-month change of the electricity consumption of the Construction & Materials 

sector lagged by four months, the physical energy intensity of the Steel sector, the physical electricity intensity of the Cement 

sector, the month-over-month forward energy price change lagged by three and four months. The Sample period: Feb 2009 – 

Dec 2020. 

 


