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Abstract
The complex transmission mechanism of socioeconomic inequalities takes place in

several spheres of life. This Doctoral Thesis, composed of three essays, focuses on the
characterisation of some components of inequalities and their spread through social
groups. In the three contributions, innovative techniques have been exposed and em-
pirically assessed to extend the literature on the measurement of well-being and the
study of social inequalities. The first essay represents a study on teenagers’ leisure
time activities distribution and how it relates with income and subjective well-being
realisations. Taken from the German Socioeconomic Panel (SOEP), the information
on leisure time activities has been processed with a network-based technique to build a
multidimensional index proxying well-being. The second essay presents an evolutionary
analysis of cumulative deprivation for the Italian working-age population between 2007
and 2018. A rank-based multidimensional approach is applied for the identification of
the cumulatively deprived people. Therefore, an assessment of the statistical multidi-
mensional dependence lying across the identified deprivations is provided following a
copula-based technique. The third essay contains a focus on the transmission of health
inequality through the socioeconomic background of people. A machine-learning tech-
nique is used to derive the population partitioning into social groups and to define
the different opportunity backgrounds. Furthermore, the study provides insights re-
garding the varying effect of individual health-related behaviours on the health status.
The 2011 sample of UK Household Longitudinal Study data is used for the empirical
application.

Keywords: socioeconomic inequalities, multidimensional indicators, economic com-
plexity, copula function, inequality of opportunity.
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Chapter 1

Introduction

Probably stimulated by the disenchanting that the financial and economic crisis of 2008
has put forward, the topics of poverty and well-being have gained increasing attention
both in the academic world and in the public debate within the last decade. On
the policy side, we have assisted at many examples of institutional and governmental
initiatives to observe and monitor the social and economic conditions of people. In the
EU, among the most famous relevant policy stimuli has been the European Union’s
2020 growth strategy (2010), and the Sarkozy Commission on the Measurement of
Economic Performance and Social Progress (2008), led by J-P Fitoussi and the former
Nobel prizes J. Stiglitz and A. Sen.

In the following years, products of these renowned contributions, have been the
OECD’s project on Measuring the Progress of Societies (2013); the European Pillar
of Social Rights, with a constant update of ‘social scoreboards’ officially entering the
European Semester of economic policy coordination since 2017; and the UN’s Agenda
2030 for Sustainable Development (SDGs, 2013).

Despite the enthusiasm which has characterised the period of programming policies
for realising and implementing the European targets, the ten-year-after analysis on the
fulfilment of the EU2020 strategy came across with some delusion. Furthermore, the
recent COVID-19 pandemic has newly exacerbated old vulnerabilities, wiping out years
of economic recovery and social progress. A sign of this significant impact has been the
recent rise of the inactive and unemployed population as being primarily composed of
self-employed, young, females, and temporary contract owners.

As a further consequence, we are assisting with the surge of new forms of weak-
nesses. For example, the lockdown caused an abrupt increase in the school dropout
incidence across the countries’ most economically poor areas. This phenomenon will
strongly contribute to the increase of inequalities due to different opportunities.
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The academic attention towards multidimensional approaches for studying socioe-
conomic inequalities can be traced back to the seminal contribution of Sen (1980; 1987),
who gave rise to the necessity of studying societies going beyond the sole income mea-
sure and considering societal welfare in a broader sense. A notable contribution to the
spreading of studies related to well-being is the increased coverage of life dimensions
in survey data and the growing number of statistical approaches and computational
techniques to aggregate and process the data-collected information. From a political
and philosophical point of view, there is no unique and all-encompassing definition of
the concept of ‘well-being’. Nevertheless, there is general agreement that well-being is
the outcome of a complex system of interrelationships between the social and economic
sphere, including subjective and objective aspects. From an analytical perspective, so-
cial scientists have dealt with its measurement using a variety of statistical tools, each
one motivated by given normative assumptions.

It is precisely the word multidimensional representing a common thread across
the three essays displayed in this thesis. Combining ideas from economic theory, phi-
losophy, sociology, and data science this thesis provides innovative tools to interpret
socioeconomic inequalities and measure well-being.

Despite their "distance" regarding the means used in each empirical application, the
essays together attempt to provide a set of tools to enrich with practical computational
examples specific parts of the literature on well-being and inequalities. The recurring
innovative element of the thesis is precisely the exploration and adaptation of new
multidimensional measurement techniques. Furthermore, each contribution attempts
to contextualise the novelties within the well-being and inequalities’ literature domain.
However, it should be emphasised that such approaches refer all to the individual
sphere, and therefore do not take into account trends in inequalities referred to different
observation units, e.g. households and territorial.

This dissertation, consists of three essays, each of them is presenting a measurement
technique supported by an illustrative empirical application of the new approaches’ ad-
vances and limitations. The chapters follow the structure of academic papers. Each
essay is self-contained and can be read independently.

In the first essay, in Chapter 2, a network-based approach is used to build a mul-
tidimensional index of well-being for teenagers. The well-being status of people is
proxied by processing information about several leisure activities. This study aims to
assess how the information on the use of time, if observed at youth, can add valuable
information on future well-being realisation.
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The specific multidimensional index technique employed for this experiment is the
"Economic Complexity Index" of Hausmann and Hidalgo (2014). This technique uses
the information provided by the network which maps the links between two entities,
namely individuals and everyday life activities, in order to provide a ranking of the
sample considered. The everyday activities are different in terms of the required effort
and cost to be sustained. For this reason, there is high variability in the distribution
of people’s time employment.

Behind the adoption of the "Economic Complexity Index", which provides a rank-
ing of people according to their use of time, is that, not only specialisation matters,
but also diversity is the key to measure human complexity. Firstly, the choices and
capabilities of individuals are identified through the observation of the "specialisation"
of people in a specific activity, i.e., whether such activity is considerably present in the
overall activity set of a person. Second, each activity is defined by its “sophistication”.
Third, the eclecticism of individuals in terms of the multiplicity of their activities and
interests, is considered. The data used for computing the Complexity index comes
from the special module dedicated to 17 years old respondents of the German Socio-
economic Panel (SOEP), which contains information on their weekly activities. An
attempt to use the complexity index as a predictor of subjective and material well-
being as recorded in later waves of the survey is proposed, despite the strong sample
attrition. From the exercise it emerged that a high complexity for individuals is associ-
ated with social activities. Very ubiquitous activities, such as watching TV, are instead
associated with low-ranked people in the complexity score. Very specialised activities,
e.g., playing an instrument, are instead quite rare and associated with mid-complex
people. The complexity ranking are correlated with current subjective well-being per-
ception, and with the economic conditions of the individual in the future.

As stressed within the literature on poverty and social exclusion, there are many
forms of deprivation which tend to come together in societies. The evolution of cumu-
lative deprivation is addressed in Chapter 3, regarding the working-age population in
Italy between 2007 and 2018. Cumulative deprivation is characterised by disposable
income, health status, housing quality, job conditions and educational attainment. All
the dimension-related outcomes are observed at the individual level in each single year
using the cross-sectional EU-SILC data.

In this paper, a copula-based technique is adopted to estimate the dependence
lying among the multiple dimensions of cumulative deprivation. Copulas are used in
statistics to evaluate the degree of dependence within a rank-based multidimensional
framework; therefore, they have been gaining attention in social studies for inspecting
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the properties of interrelations taking place among different unit variables. A very
recent contribution by Decancq (2020) offers a toolkit to address the analysis of the
dependence at the extremes of the distributions’ multiple dimensions of well-being: the
diagonal dependence index.

In the period considered, the cumulatively deprived population in Italy shows a
growing trend, amounting approximately to one million individuals in 2018. A visi-
ble peak of the phenomenon, with respect to the total sample, emerges in 2014 and
2015, highlighting a visible correlation with the trend of the estimated dependence
index for the empirical multidimensional copula. The presented index of multidimen-
sional dependence could be interpreted as measuring the degree of association between
the various forms of deprivations taken into consideration. Given its proximity to
the concept of poverty, cumulative deprivation has been contextualised with respect
to the current estimates of relative and absolute poverty provided by the Italian Na-
tional Statistical Institute (ISTAT). A descriptive comparison is provided between the
maximum income of cumulatively deprived people by household type and geographic
location, with two poverty income thresholds (the AROPE and the ISTAT’s Absolute
poverty estimated thresholds).

The COVID-19 pandemic’s disruption has put under the spotlight the highly un-
equal distribution of health characterising current societies. Furthermore, health depri-
vation has shown strong links with deprivation of other facets of life. In Chapter 4, the
socioeconomic drivers of inequality of opportunity (IOP) in health are investigated and
some light is shed on the methodological progress that characterises the IOP models.
IOP in health is assessed controlling also social group-specific trends of health-related
behaviours in the determination of the health outcome. Despite the health-related
behaviour is considered as a proxy of effort, its connection with the social background
is kept into consideration within the model framework. The application introduces
a new methodology – the Model-Based Recursive Partitioning (MOB) – to derive the
population groups while estimating, within each group, the relation between the health
status and the effort variable. This study represents an empirical application of the
measure of the “direct unfairness” and the “fairness gap”, as proposed by Fleurbaey and
Shokkaert (2009).

The empirical application is conducted using the UK Household Longitudinal Panel
Survey. This dataset, in wave 2, contains data nurse-recorded on a sub-sample of the
whole database regarding physical biomarkers. This information has been aggregated
into a general index defining the physiological health condition of each individual. The
evidence coming out by the adoption of the MOB technique shows a significant role of
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the socioeconomic background of people in determining health outcomes. Furthermore,
it emerges clearly that, the behaviours are significantly affecting the health status with
a different magnitude according to the social group of belonging. Despite the lower
return to efforts that we observe among the most disadvantaged social groups, the
distribution of behaviours show a slightly higher average effort for those with poorer
socioeconomic background.





Chapter 2

The complex nature of the use of time

2.1 Introduction

"The quality of life depends on people’s objective conditions and capabili-
ties."1

Although per capita income is still by far the most popular measure of peoples’
well-being, there have been various proposals to extend the horizon of its measure-
ment. Among the best-known examples, the United Nations launched the upgrade of
Sustainable Development Goals (SDG) in 2015; and the Organisation for Economic
Co-operation and Development’s launched the Better Life Index in 2011.

Many scholars have studied well-being from a multidimensional perspective, includ-
ing both objective and subjective aspects of life, inspired by the works of Fleurbaey
et al. (2008); Stiglitz et al. (2009).

With this paper, well-being is observed from a different perspective using data on
the leisure activities. The everyday leisure activities are different in terms of their
quality and type of effort required. Furthermore, the variability of activities can vary
substantially across the age distribution. There are essential differences in the possi-
bilities people have for spending their time on the things they value most. Esteban
Ortiz-Ospina and Roser (2020) in their detailed study on the use of time across coun-
tries for the project "Our World in Data" said: "Studying how people spend their time
represent an important perspective for understanding living conditions, socioeconomic
opportunities, and general well-being". Form an “inequality of opportunities” point
of view we can expect that the heterogeneity of time-use may also shape the future
possibilities of a person.

1This statement is one of the twelve recommendations of the Report of the Commission on the
Measurement of Economic Performance and Social Progress written by Stiglitz et al. (2009)

6
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The growing coverage of survey data, led to a higher attention onto studies that
analyse multiple facets of our lives. A natural consequence has been the increasing
number of well-being indicators and dashboards presented, which aimed at comparing
people’s status across and within countries. A way to enrich the picture describing
the individual well-being through the information gained by the distribution of the
use of time, it is hereby proposed the employment of an indicator, ”borrowed” from
the macroeconomic literature on trade and growth, namely the Economic Complexity
Index.

This indicator – which, as it is believed, has a good potential within the use of
cross-sectional micro-economic data – aggregates the data making use of the Method
of Reflections (MoR), an algorithm presented by Hausmann and Hidalgo (2014) for
creating their Economic Complexity Index. With this technique, the information is
provided by the network mapping the links between two entities: the individual and
the activities he/she makes in his/her free time.

The algorithm’s inputs are the diversity of the people’s activity sets, and the ubiq-
uity of every single activity across the population. The MoR is a recursive algorithm
that repeatedly corrects one measure with the other to enlighten the in-depth informa-
tion on each person and activity, which does not emerge at first sight.

Figure 2.1 is a graphical representation of the concepts of diversity and ubiquity
using a very simple example with individuals and activities.

Figure 2.1: The Individual-Activity network, an example

As it is possible to see from the figure, Sam watches TV, plays basketball and
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spends time with friends. Therefore, one could say that he has a diversity score of 3,
whilst Jane and Mary have a diversity of 2 and Jack only of 1. There are in total three
people watching TV, thus this activity has ubiquity score of 3. Despite Mary and Jane
have same diversity, Jane is doing an activity that is very ubiquitous, whereas Mary
reads a lot of books, which is quite rare.

The algorithm of Hausmann and Hidalgo (2014) captures all these information in
an iterative way and produces a complexity ranking of all the people and the activities.

With this application, it is possible to observe a wider set of leisure activities carried
out by a population of 17-years-old individuals: the data used for the computation come
in fact from a special model built on respondents aged 17 of the German Socio-Economic
Panel (SOEP). The network of people and individuals is computed by observing the
distribution of activity-specific time use across people.

Therefore, people’s complexity is assumed to be inferred with the available infor-
mation. The aim of this application is the exploitation and the exploration of the
informative power of Individual Complexity and the evaluation of its capacity to proxy
individual subjective and/or material well-being. Furthermore, looking at the use of
time across young people, the inequality of opportunity perspective is exploited through
the assessment of the predictive power of capabilities acquired through complex activi-
ties on future material and subjective well-being. The empirical application represents
an initial exploration of the possible adaptation of this technique to a different context.
The results are provided and illustrated followed by possible questions emerging from
the outcome visualisation.

From a technical perspective, the use of the MoR’s aggregation technique contex-
tualised within multidimensional well-being, enables to contribute to the literature on
composite indicators regarding the weighting procedure.

From a normative perspective, one of the main issues in the use of multidimensional
measures of well-being is that conventional metrics like efficiency, effectiveness, and
inequality, are traditionally defined in the space of single dimension (Ray and Chen,
2015; Savaglio, 2006).

However, multidimensional metrics require methods to aggregate information for
economic analysis, decision-making, and policy-making (Costanza et al., 2016).

In recent times, this issue has opened the way to developing composite indicators
(Peña-López et al., 2008). As weights determine the trade-offs among the dimensions
and reflect value judgements on what well-being should look alike, the weighting process
is among one of the most crucial steps in building a composite index. The choice of the
dimensions themselves can be traced back to a weighting scheme, indeed the excluded
dimensions are assigned a zero weight.
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To define weights, Decancq and Lugo (2013) distinguish three classes of approaches:
data-driven, normative, and hybrid. The weights in data-driven approaches depend
solely on the distribution of the elementary indices. Normative approaches, on the
contrary, set the weights based on value judgements. Finally, the hybrid approaches
try to combine the information on the elementary indices’ distribution with the value
judgements on the trade-offs among the different dimensions.

Within the family of data-driven methods, there are three main subcategories.
Firstly, statistical approaches like the Principal Component Analysis (PCA) and the
factor analysis (among others, Klasen (2000), Noorbakhsh (1998), Fusco and Dickes
(2008)). Secondly, the most favourable weights, in particular Data Envelopment Anal-
ysis (DEA, Charnes et al. (1978)), which lately have being drawing considerable at-
tention (Shen et al. (2013); Patrizii et al. (2017); Greco et al. (2019)). Lastly, the
frequency approach. The frequency techniques dominate among most of the multidi-
mensional poverty indices. The idea behind them is that there is an inverse relation
between the frequency of the deprivation in one dimension and the weight (importance)
associated with that dimension (Deutsch and Silber (2005)). Given the association of
the deprivation concept with the ubiquity and diversity, the presented complexity in-
dex could be placed within the data-driven weights classification, in particular linking
it to the frequency techniques.

The paper is structured in the following sections. Section 2.2, contains an illustra-
tion of the methodological background of the Economic Complexity Index. In Section
2.3 follows a description of the data used for the empirical application. In Section
2.4, the empirical results and interpretations are provided. The last Section reports a
conclusive discussion on the empirical application.

2.2 Methodology

The computation’s first step is the construction of the individual-activity network,
which is created by following a relative frequency rule. The (bipartite) individual-
activity network can be associated with a binary bi-adjacency matrix M . The links
of the bipartite network are determined by an index transformation of the original
quantity of unit time that an individual spends averagely on the specified activity.

The transformation applied represents a weighting procedure of the importance of
the activity in terms of, i) the whole activity set of the specified individual, ii) the
total amount of the activities considered. This transformation can provide a measure
of Revealed Comparative Advantage of each individual in a particular activity. The
so-called RCA, or "Balassa Index", has been adopted by Hausmann and Hidalgo
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to generate the binary bi-adjacency matrix necessary to implement the Method of
Reflections.

The rationale behind the RCA computation is that we value the match between all
individuals and the activities based on the person’s revealed comparative advantage
in each activity. The matches define a bipartite network that filters the links between
the individual and the activity, keeping only the individuals’ specialisations. This step
is necessary to compute the MoR only for those activities in which individuals are
specialised. By means of this, the concept of well-being is adapted to this exercise
aiming at grasping the differences across peoples’ opportunities, stimuli and interests,
and, consequently, at ranking them.

The input for the RCA computation is the original data matrix containing the time
spent per activity, P

n×m
, where h = 1, ..., n and a = 1, ...,m respectively the number of

the individuals and of the activities. The RCA value for each match between individual
h and activity a results from the following operation:

RCAh,a =
Sh,a

Ta
(2.1)

For computing the S matrix, the time spent on each activity for each individual have
been divided by the total time each person spend in the activities considered

∑
xh,a.

This matrix represents a scaling factor for the time-unit spent by the individual h in
each activity as a ratio of total (a = 1, ...,m) activities done. The vector T is the sum
of all the amount of time each individual (h = 1, ..., n) has devoted to a specific activity
a.

S
n×m

= P
n×m

/
∑
a

xh,a , Ta
1×m

=
∑
h

S
n×m

(2.2)

Dividing Sh,a by the element Ta, a further scaling of the individual amount of time
per activity is provided with respect to the other people. The RCA matrix from Eq.
(2.1) illustrates, for every individual, the revealed comparative advantage in making
each activity. In other words, the RCA shows which individual is devoting a "greater
than usual" portion of time in a certain activity.

When RCAh,a > 1, it means that an individual h consumes an activity a for a
portion of time that is greater than the average amount of time dedicated to such
activity by other people. Furthermore, such activity is a considerable part of the
overall individual activity set. Defining the bi-adjacency matrix as Mh,a The value of
the match, in the case of an RCAh,a > 1, is mh,a = 1.
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Alternatively, the value of the match is mh,a = 0, if the portion of activity done
by an individual is very small compared to its activity set and the total amount of
consumption of this good, (RCAh,a ≤ 1). The bi-adjacency matrix Mh,a, represents
the individual-activities bipartite network as follows:

Mh,a =

1 if RCAh,a > 1

0 if RCAh,a ≤ 1
(2.3)

This matrix has size (n×m) and coincides with the individual-activity network used
to build the bi-adjacency matrix Mh,a of Eq. (2.3). From now on, any reference to the
activity per person coincide with the case in which the individual shows a Revealed
Comparative Advantage greater than 1 in making a specific activity.

The RCA represents the first step of the weighting scheme between dimensions of
leisure time. At this stage, the weight is converted into a binary variable dividing the
population in two groups, namely the individuals who keep the dimension as essential
and those who do not. This procedure attaches “same weight” equal to 1 to all the
dimensions with a high RCA score. Otherwise, it equals to 0. All the activities are
considered as perfect substitutes and they are measured with the same unit, i.e. time.
Thus, the activities are observed through a frequentist approach. Afterwards, the
information retained is the degree of the nodes within the individual-to-activity network
Mh,a.

The degree of node in this bipartite network are respectively the measures of diver-
sity and ubiquity : kh,0 and kg,0. The degree of the node of individual1 is equal to the
sum of all the edges that start from a particular vertex, the individual1, connecting
another vertex.

The diversity measure of a specific individual is the sum of all the activities done
by an individual:

khi,0 =
∑
a

Mh,a (2.4)

While the ubiquity measure of a specific activity is the sum of all the individuals
who consume it:

kgj ,0 =
∑
h

Mh,a (2.5)

The diversity vector kh,0
n×1

, and the ubiquity vector kg,0
1×m

, contain respectively the

measure computed for each individual and good.
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Hausmann and Hidalgo (2014) have shown that the Index of Individual Complexity,
can be obtained by the standardisation of the resulting vector

−−→
kh,N where the subscript

N represents the N th iteration of the Method of Reflections. 2

The Method of Reflections is an iterative algorithm which combines the information
provided by the individual-good network properties. Each iteration computes a value.
This value represents an approximation of the conditional probability to move through
the network’s links to reach a specific individual starting from a different one. Before
explaining its implicit meaning, it is worth to present its algebraic construction. The
MoR runs simultaneously for the individuals and the activities. Respectively using the
diversity measure and the ubiquity measure.

kh,N =
1

kh,0

∑
a

Mh,akg,N−1 (2.6)

kg,N =
1

kg,0

∑
h

Mh,akh,N−1 (2.7)

Plugging the recursion at (N − 1) of Eq. (2.7) in the recursion at N of Eq. (2.6),
it is possible to obtain a formula that expresses the diversity recursion as a function of
the initial conditions and the diversity of the other individuals (h′) who perform the
same activities of h.

kh,N =
∑
h′

M̃hh′kh′,N−2 (2.8)

The new system obtained contains a matrix called M̃hh′ .

M̃hh′ =
∑
a

Mh,aMh′,a

kh,0kg,0
(2.9)

The MoR (equation 2.8) brings to the representation of the individual-activity net-
work as a Random Walk process3 expressing the probability of reaching individual h,
starting from individual h′ and passing through the activities they carry out. The big-
ger is the similarity of two individuals’ activity set, the higher will be their proximity in
the final ranking obtained by the Complexity Index. Section 2.6 contains an extensive
definition of Random Walk process in the network theory framework.

We can say that at the N th iteration, kh,N is a linear combination of the elements

2This number is approaching an even number around the 20th iteration for the individual com-
plexity (Hausmann and Hidalgo, 2014). For what concerns the activity complexity the N th iteration
approaches an odd number around 19.

3Where M̃hh′ is the transition matrix.
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of the initial step kh,0 where the coefficients result by the product of all the degree of
nodes lying in the path, which connect the individual h′ to individual h (Hidalgo and
Hausmann, 2009).

With a higher number of iterations, it is possible to grasp more information from
both characteristics. Therefore, the correlation between the initial and the final itera-
tions is decreasing in the number of iterations.

Given that the sequence kh,N converges to a vector with all equal values, the dif-
ference between subsequent elements in the sequence of kh,N and its limiting value
progressively shrink (wh = kh− kh,N). According to the algebraic interpretation of the
matrix M̃ , the iterative process let the result of (2.8) to converge to the eigenvector of
the matrix in (2.9) associated with the second highest eigenvalue of the matrix M̃ .4

Given that we are working with a bipartite network, the even and odd iterations
have different meanings. More precisely, there is a clear interpretative distinction be-
tween these two variables (Caldarelli et al., 2012). For what concerns individuals, the
even variables (kh,0, kh,2, ...) are generalised measures of diversification of their activity
sets, while the odd variables (kh,1, kh,3, ...), are generalised measures of the ubiquity of
the activities.

2.2.1 Concluding remarks on the methodology

The RCA index can extract the information concerning the individual level of “spe-
cialisation” in a specific activity defined through a relativistic approach. This index
collects only information regarding the time-use unit measures. While observing the
distribution of the use of time across different activities, it is worth to consider the
heterogeneity among individual characteristics, which shape needs and choices.

The RCA computed ranking interpretation is in contrast with the standard Ricar-
dian theory of comparative advantage and specialisation.

While Ricardo predicted that specialisation in a narrow sector is the ”virtuous”
path for growth, the complexity algorithm conveys a different message. The rationale
behind complexity is that, not only specialisation matters, but also diversity is a proxy
of well-being.
Caldarelli et al. (2012) suggest to algebraically test whether the diversity and ubiquity
contribute to define a complex system, through a simple nestedness test. The nested-
ness is a statistical property of bipartite networks, described as a triangular matrix. In

4(Kemp-Benedict, 2014). An extensive discussion on this statement is presented in the Theoretical
Appendix section 2.6
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this case, the bipartite network is the bi-adjacency matrix representing the interactions
between the individual and the activity, when they have been respectively sorted in
ascending complexity. In graphical terms, a nested bi-adjacency matrix shows that
the number of the "ones" in each row, from the lower to the upper one, is a subset of
the previous row. More specifically, a nested matrix looks like an upper triangular
matrix.5

Being the individual-activity network a nested structure, some characteristics con-
cerning both the activities and the individuals observed are implied. First, a randomly
chosen activity appearing in a highly diversified individual’s activity set will likely be
a non-ubiquitous activity. By contrast, a randomly chosen activity that appears in
poorly diversified activity sets will less likely be complex good. Second, a randomly
chosen individual who does very frequently a highly ubiquitous activity is not likely to
be highly diversified. Conversely, a randomly chosen individual that does most of the
time a rare activity is more likely to be highly diversified. The system’s nestedness is
also a necessary condition of well-behaviour of the algorithm of the MoR adopted to
obtain the Complexity Index.

Fig. (2.2) shows the bi-adjacency matrix of the bipartite network of people and
activities in 2011.6 If we would have observed more specialisation, this matrix should
have been a block diagonal matrix, whilst, instead, it is more likely to be an upper
triangular matrix.

Figure 2.2: Network of individuals and activities sorted by their Complexity

5Section 2.6, contains a paragraph on the nestedness test adopted for this paper
6It is a binary matrix whose components are only 0 and 1.
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Figure 2.2 shows people (on the y-axis) and the activities (on the x-axis) sorted by
increasing Complexity Index scores.

The network shows the links between the people and the activities assigned with
the RCA index. The dark red spots identify those individuals dedicating a higher
quantity of time with respect to the average time spent by other people to a specific
activity (RCA index = 1). The more red spots are appearing alongside a row, the more
diversified is the individual activity set. Likewise, the more red spots are appearing
alongside a column the more frequently is the single activity appearing across various
activity sets. On the contrary, the orange spots show a non-significant consumption
amount (RCA index = 0).

People at the bottom of the y-axis of figure 2.2, are associated with the lowest
complexity. The higher the complexity of the activities, the more on the right corner
a given activity will appear.

2.3 Data

The empirical application has been realised using data on the use of time from the
Youth Questionnaire of the SOEP. The computation is provided on the same activity
set in different years 2006, 2011 and 2016. Furthermore, the panel properties of the
data were exploited comparing the same individuals who took part to the 2011 youth
questionnaire sample five years later in the individual adult sample of 2016. Formally,
the following SOEP data sets were necessary for the empirical application:

• wjugend: Individual questionnaire for 17 years old people, year 2006

• bbjugend: Individual questionnaire for 17 years old people, year 2011

• bgjugend: Individual questionnaire for 17 years old people, year 2016

• bbh: Household questionnaire, year 2011

• bbp: Individual questionnaire, year 2016

The reasons that led to the employment of the youth questionnaire are mainly two.
Firstly, there is a trade-off between the specificity of the activities observed and the
variety of the individuals’ characteristics. For example, the average disposable leisure
time for an adult with a family is lower than the one of a teenager. Given that the
person-to-activity network is obtained with a frequency approach, the age is a source
of heterogeneity for which it is necessary to control. The ideal application would be
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a computation of the complexity ranking for each specific age class. Furthermore, an
age specific computation allows for varying the activity set considered.

Secondly, the choice of the data on the teenagers allows to provide an "inequality
of opportunity" point of view. For this reason, the observed complexity is confronted
with material and subjective well-being parameters both at time t and t+ k.

The activities for which the time frequencies are observed are watching television,
surfing on the internet, listening to the music, playing an instrument or singing, doing
sport, dancing or acting, doing tech-activities such as coding and programming, read-
ing, relaxing or doing nothing, spending time with girl/boyfriend, spending time with
best friends, staying with the clique, going to a youth centre, volunteering activity, and
going to religious initiatives.7

The complexity algorithm adopts a relativistic perspective strictly depending on
the distributions observed at time t. Thus, there could be some dependence of the
outcome on the activities distribution characteristics regarding each point in time.
The empirical computation is performed for three different years in order to control,
at least partly, for the relativistic perspective inherent to the results. The data have
been elaborated by taking into account the panel´s perspective - following the same
individual throughout time -, and by observing different samples in different years.

Each activity is associated with a score, which defines the frequency of use of a
person. The frequencies have been normalised on a monthly scale, as shown in the
following table.

Questionnaire
time definition

Frequency
per month

Daily 1
Weekly 10/30
Monthly 4/30
Rarely 1/30
Never 0

The Complexity Index is the result of a recursive bipartite iteration, hence, both
the individual and the activities are ranked – in this regard, it is interesting also to
observe an activity-specific pattern in the ranking process-.

Therefore, in order to extrapolate some useful insights regarding the activity rank-
ing, the activities have been divided into two groups, whether they are considered as
social or non-social activities.

7The youth questionnaire of 2016 includes also the time spent on the social networks.
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On data attrition

The merge between the 2011 teenager dataset with the individual adult data of 2016
presents the 62% of attrition. Hence from the 506 individuals composing the original
sample the population observed five years later is composed of 188 individuals (the
37%). Among those people who do not appear in the individual questionnaire five years
later, the 53% are people who, having changed their place of residence with respect
to the household included in the panel, vanish form the questionnaire. The remaining
47% of missing matches appear only in the households questionnaire. There has been
a drastic reduction of the representative power of the new panel-data set. Therefore,
there might be strong biases emerging from the panel analysis due to the plausible
correlation between social and economic conditions of those who could afford leaving
parental home before 23 and those who could not. It is plausible that parents support
the longer education of their children with a longer cohabitation. This could mean
that the people who remain in the panel are mostly people who decided to continue
their studies with tertiary education. By contrary, who left the parental home between
18 and 23 might be who economically emancipated through work or who, with the
financial support of their parents could leave the parental home for continuing the
education elsewhere. Given that most of the general socio-demographic information is
not available in the youth questionnaire (the gender is missing as well), it is not easy
to identify specific attributes who correlate with the disappearance from the panel,
neither to assess which portion of them are missing at random.
Therefore, the entity of the attrition could be verified through the mean difference
analysis between the attributes observable within the two samples. As it emerges from
the table A.4 in the Appendix A, the complexity ranking on the sub-sample of people
observed five years later does not show a statistically significant mean with respect to
the total sample. Moreover, table A.5, shows that there is no significant change in
the means of each activity between the two samples. Hence, although the Complexity
index’s descriptive parameters are not demonstrated to be significantly varying across
the samples, the level of attrition brings with it obvious problems in the ability to
generalise what emerges from the time analysis.

2.4 Empirical application

Economic growth models traditionally conceive the specialisation as a strength. The
primary reference may be the Ricardian model of specialisation. The experiment of
Hausmann and Hidalgo (2014) shows however, that this prediction is not correct: the
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“diversity” factor also plays a central role in the development of a country. Although this
study’s subject switches from the country to the individual, the same principle stands
for the latter unit of observation. The higher is the diversity and the complexity of
people, the better we would expect to be their well-being status.

By contrast, the more a specific activity is spread out across the population, the
less complex will be the individuals who mostly spend their time on it. As a result,
there is an inverse relationship between the complexity of activities and their ubiquity
scores.

A complete picture regarding the activities’ complexity could be provided by the
observation of the relation between complexity and ubiquity. Therefore, figures 2.3,
2.4 and 2.5 depict the relation between the activities’ characteristics for the three years
considered. It is possible to consider these figures as providing a sort of ”identikit” of
the complex activities and at evaluating whether there is a stable relationship between
the observed activities and their complexity ranking across time.

Figure 2.3: Complexity VS Ubiquity - 2006

Figures 2.3, 2.4 and 2.5 show the relation between the complex activities and their
ubiquity score. As expected, there is an inverse relationship between the complexity of
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Figure 2.4: Complexity VS Ubiquity - 2011

an activity and its ubiquity. From a year-by-year perspective, it emerges that, despite
the rankings vary in terms of the complexity ranks assigned to the different activities
the ubiquity of activities is somehow stable.

Dividing the activities into two groups according to whether these are social or
individual activities, it emerges that social activities are associated with higher com-
plexity. This relation results visibly stable across years. The ”social” activities are
those including people of similar age spending time with each other. In the plots, it
is possible to distinguish the social from the non-social activities by the colour of the
labels. In all the three years, a higher concentration of social activities is evident in the
graph’s top-left corner, where the complexity score is high. The worst ranked activities
are stable across the years: spending time watching TV, listening to music and, for
2016, being on the social networks. These activities are widespread across a population
of 17-years-old individuals and, for this reason, they are considered the less complex.

Which is a plausible interpretation of the Individual Complexity ranking? In which
way is such ranking related to the “income” factor and to the subjective well-being?
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Figure 2.5: Complexity VS Ubiquity - 2016

How can be the top-ranked complex people described? We discuss the answer providing
some outstanding results.

Looking at the figures, there is a pattern emerging spontaneously across each yearly
complexity VS Ubiquity plot, the distribution of social activities. Indeed, it emerges
that social activities are non ubiquitous and always associated with high complexity.

Supporting the intuition concerning the role of social activities, is the relationship
between the scores of the individual complexity and the intensity of social activities.

Figure 2.6, shows the fitted relation between the individual complexity and the
intensity of social activities appearing in the time use set of people.

Counting how many social activities every person declared to be doing on a weekly
or daily basis, figure 2.6 shows a dispersion plot throughout complexity scores. From
the plot emerges a strictly positive relation between the two series, providing a further
element for validating the interpretation of complexity as a metric of human flourishing.

In which way is Human Flourishing - intended as a fertile network of social connec-
tion and active social participation - positively linked to both subjective and objective
dimensions of well-being?
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Figure 2.6: Interpreting of Individual Complexity as Human Flourishing
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Although it has been already depicted how any evolutionary analysis may not be
fully reliable due to the panel data attrition as illustrated in Section 2.3, it will follow a
quick discussion on how the complexity index correlates with contemporary and future
realisations of income and life-satisfaction. Table 2.1 illustrates the Spearman rank
correlations between the Individual Complexity and both current and future material
and subjective well-being.

Unique rank of: Unique rank of Complexity
Life satisfaction 2011 0.126∗∗

Life satisfaction 2016 -0.099

Household net income 2011 0.143∗∗

Individual net income 2016 0.213∗∗

Observations 529
∗ (p < 0.05), ∗∗ (p < 0.01), ∗∗∗ (p < 0.001)

Table 2.1: Spearman Correlations table

As it emerges from table 2.1, there are significant rank correlations between the
complexity and the material conditions observed in 2011 and 2016, and between the
complexity and the contemporary individual life-satisfaction.

Future subjective life-satisfaction appears to be uncorrelated with the ranking of
past complexity, yet it turns out to be negatively related with complexity. While the
evolution of income can be considered as a time dependent process, implying that
the correlations emerging at time t are reasonably preserved up to time t + k; the
subjective life-satisfaction involves a set of unobserved factors which may be hardly
predicted through a simple correlation analysis.

Therefore, the relation between life-satisfaction and complexity is further explored
for the 2011. Tables 2.2 and 2.3 respectively provide a purely descriptive relation
between the average complexity and by levels of life satisfaction and by income deciles.

More accurately, tables 2.2 and 2.3 show the average individual complexity levels
in 2011 for life-satisfaction levels and current household income deciles.

A visible increase in the average complexity in the population observed emerges
in the group of higher-income deciles and the higher life-satisfaction levels. How-
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Individual Complexity

Life satisfaction (mean) (sd) (N)
1 -1.288 . 1
3 0.222 1.051 10
4 -.5385 1.027 14
5 0.0446 0.890 30
6 -0.147 0.957 36
7 -0.064 1.001 80
8 -0.0589 1.013 166
9 0.104 0.978 125
10 0.316 1.021 43
Total 0.002 0.998 505

Table 2.2: Average Complexity by life satisfaction level - 2011

Individual Complexity

Income deciles (mean) (sd) (N)
1 -0.309 0.984 49
2 -0.185 0.889 56
3 -0.127 1.014 54
4 -0.134 0.907 41
5 0.152 1.013 57
6 0.151 0.929 50
7 -0.016 0.968 58
8 0.217 1.113 44
9 0.029 1.077 48
10 0.239 1.055 47
Total -0.001 1.002 504

Table 2.3: Average Complexity by household income decile - 2011
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ever, especially by focusing on life-satisfaction, it is noticeable that some groups are
dramatically small, therefore they lack of valuable generalising power over the whole
population.8 Due to the small sample size, which gets even tighter in merging the data
set in the future years, it is not possible to provide any parametric insight into the
complexity-to-well-being relation.

In order to keep an opportunity-oriented perspective, the distribution of teenagers’
complexity has been compared through the observation the parental support provided
on studies and life choices. Figure 2.7 provides a descriptive illustration of the parental
support variation through two groups of individual complexity. The average level of
peoples’ complexity is observed by the subjective perception of parental support in
education and by distinguishing the individuals from belonging to the top fifth-ranked
complex people and the rest.

Figure 2.7: Average complexity by parental support - Top 20 VS bottom 80 complex people.

Even though the role of parental support in education is positively affecting indi-
vidual complexity, it does not emerge any heterogeneity in the impact between the top
20 complex people and the bottom 80.

8Figure A.1, in Appendix A, summarises the relation between complexity and life-satisfaction
levels across years, illustrating the heterogeneous sizes of each life-satisfaction level group.
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2.5 Conclusions

The Individual Complexity Index is a multidimensional composite indicator summaris-
ing information on the use of time which has been used for describing individual well-
being. The employment of this particular index within micro-data could represent
innovation for processing a hidden part of the information available in the data. Con-
cerning the application on the use of time data, the weighting function aggregate infor-
mation following a data-driven approach that evaluates the activity set in terms of two
particular characteristics, namely the diversity of the activity sets and the ubiquity of
all the activities across the sample. The Complexity Index is computed by applying the
Method of Reflections, an algorithm generally used in macroeconomic studies, which
provided interesting interpretations on country-growth rankings.

The motivation behind the employment of data on the use of time is that, it is
considered to be adding valuable information to the picture of well-being status, both
from the material and subjective point of view. Indeed, good material conditions
can amplify the possibilities to invest in non-remunerative activities, as well as the
subjective perception of life status is qualitatively determined by the leisure activities.

By observing the use of time distribution throughout leisure activities, it has been
possible to both rank the activities and the people. Therefore, the complexity scoring
has been used as a new perspective to observe people’s well-being status and material
outcomes.

From this empirical application, the individual complexity could be building up a
definition of well-being as human flourishing. The concept of human flourishing could
be associated to the ancient Greek adjective poly-tropon, used in the Odyssey to describe
Ulysses. This word, which literally means ”many wayed”, is a metaphorical adjective
which stands for a multi-faced deep complexity. Ulysses is a person with thousands of
resources; his diversity represents his ability to adapt and survive in various situations.

From the point of view of the existing literature on the Economic Complexity, new
possible scenarios of application of this methodology has been presented translating
its macroeconomic original interpretation to an individual-based context.Besides the
empirical outcome, this measure could represent an attractive data-driven approach
within the context of standard well-being index construction.

Nevertheless, the simulation presents numerous shortcomings concerning both the
methodology and the data used. Regarding the former, this computational method
strongly depends on the sample specific network structure. For this reason, the gen-
eralisation power is considerably limited. In order to partly overcome this shortfall it
has been provided a computation for different years and samples.
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Despite the reduced representative power of the data, it emerged the presence of
a significant contemporary relation between Complexity and selected metrics of both
material and subjective conditions.

Besides that, it has been already argued that the main limitation of this experiment
is the data set attrition, which did not allow to provide a complete picture of the
Complexity score’s predictive power with respect to future well-being dimensions.

Future developments of the study could consider the extension of the benchmark
well-being dimensions to provide a more comprehensive definition of Individual Com-
plexity and the development of a pseudo-panel for realising a parametric analysis.
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2.6 Theoretical Appendix

2.6.1 Random Walk definition

In a network, the probability of moving to vertex j after having done t steps to reach
vertex i, is given by the following Markov chain9:

πj,t+1 =
∑

i|j∈N(i)

1

di
πi,t (2.10)

The ith node of the graph has a certain degree, di that represents the number of links
that depart from it. The Eq. 2.10 shows that this probability is obtained by the
summation of all the N links starting form i and going backward. This probability
will be different from zero if the edge j belongs to one of those N links. If we pass
from the single step representation to the full graph, all the links are represented in
the transition matrix P , where the pi,j = 1

di
, and if there is no connection between e.g.

i and the nth vertex, then pi,n = 0. We can represent the probability that the process
at vertex i transitions to vertex j at next step in matrix notation using the transition
matrix: −−→

πT
t+1 =

−→
πT

t P (2.11)

The Eq. 2.11 for N →∞ represents a probability distribution of the process until
N steps. Going to infinity, the distribution for (N + k) steps it will not vary.

2.6.2 Algebraic interpretation of the method of reflections

In order to make a clear connection between the Method of Reflections and the eigen-
vector of the matrix M̃ , we need to go back to the Eq. 2.11 and substitute the elements
of such system with the elements of the M̃ matrix of Eq. 2.8. In other words, we have
to represent Eq. 2.8 as a problem of linear algebra (Kemp-Benedict, 2014).

−−→
kh,N = M̃

−−−−→
kh,N−2 (2.12)

Given that the diversity corresponding to individual h at theN th iteration converges
to a constant number, we can write this concept as:

kh = lim
N→∞

kh,N (2.13)

9Such a process is called Markov chain because is a process which depends strictly on the starting
position, the position at time t, and it is independent on which vertex will be reached at step t+ 1.
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The same statement holds for the row vector of diversity
−→
kh. Now, given that for

N →∞
−−→
kh,N and

−−−−→
kh,N−2 are indistinguishable, we can rewrite the Eq. 2.12 as:

−→
k = M̃

−→
k (2.14)

Matrix M̃ is the transition matrix of the Random walk, i.e., all its columns the
coefficients are 0 ≤ mi,j ≤ 1 and their sum column-wise is equal to 1; hence we can
assess that is also row-stochastic.

The linear system in (2.12), for a high number of iterations is equal to(2.14) and
coincides with the concept of eigenvector centrality of the M̃ matrix. More precisely,
last equation is equivalent to the concept of eigenvector centrality of a row stochastic
matrix (Mealy et al., 2018). The eigenvector centrality of a matrix is the row vector
corresponding to the highest eigenvalue λ. If M̃ is row stochastic, its highest eigenvalue
is λ = 1 and the associated eigenvector will have the same value on each component10.
Let M̃ be a squared invertible matrix, its eigenvector associated to the eigenvalue λ,
is a vector

−→
k such that the following equality holds:

M̃
−→
k = λ

−→
k (2.15)

The last two equations are equivalent. The Perron-Frobenius theorem implies that,
given the presented properties of the M̃ matrix, the power iteration shown at Eq. 2.12
converges to the eigenvector associated with the highest eigenvalue of M̃ that have
been defined in Eq. 2.14.

2.6.3 Perron-Frobenius Theorem

Let A be an irreducible squared non-negative matrix of size (n x n), ai,j > 0, for which
1 ≤ i, j ≤ n. Than there exist a positive number λ1 called Perron root, such that λ1 is
an eigenvalue of A and any other eigenvalue λi for i 6= 1 in absolute value is smaller
than it:λ1 > |λi|. There exist a unique eigenvector v∗ of A corresponding with eigen-
value λ1 such that it is the only eigenvector with all positive entries. Finally, the power
iteration method vt+1 ← Avt starting at any initial vector v0 that is not orthogonal to
v∗ converges to v∗ as t→∞.

What follows from this theorem is that, Eq. 2.12 coincides with the power iteration
that, starting from an initial value kc,0 that is not orthogonal to

−−→
kc,N , will converge to

−−→
kc,N as the iteration grows.

10Networks: an Introduction, Newman (2010)
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Finally, we can say that the linear system described by Eq. 2.12 converges to this
constant eigenvector, that is exactly the eigenvector centrality of M̃ . Furthermore,
given that for a high number of iterations we do not observe any difference across
individuals, there is no need to look at the eigenvector centrality to obtain the ICI, but
we need to look at the sequence kh,N when there is still some variability in order to be
able to draw a cardinal ordering of the values.

In the limit of large N, these deviations are proportional to the eigenvector of M̃ with
the largest eigenvalue less than one. That is, they are proportional to the eigenvector
associated with the second largest eigenvalue v2. The eigenvector associated with the
second highest eigenvalue of the linear system in Eq. 2.14 defines the direction of the
system convergence when there are still some differences among the individuals. Such
eigenvector coincides with the algebraic definition of the Individual Complexity Index
(ICI).

The method to find the individuals Complexity Index requires on one side to com-
pute the vector of the N ' 20 iteration and to standardise it. On the other hand,
it is necessary to derive the M̃ matrix and compute the eigenvector associated with
its second-highest eigenvalue. The standardisation of such eigenvector will be exactly
equal to the standardised vector obtained at the N th iteration.

ICI =

−→
k− <

−→
k >

stdev(
−→
k )

(2.16)

Since the ICI vector has as many rows as the number of individuals involved it
is possible to rank them according to the coefficient’s scores associated with each of
them. The computation of the Activities Complexity Index, ACI, is equivalent to the
procedure exposed above.

2.6.4 Nestedness test

We perform a nestedness test for the matrix shown in Figure 2.2. The test is provided
from the software package FALCON11 (Beckett et al., 2014).

Our output statistics has a p-value equal to 0.02. The test’s output statistics is the
τ -temperature, the ratio between the nestedness measure of the input matrix and the
average nestedness of the null-models.

T =
NestM

< Nestnull >
(2.17)

11https://github.com/sjbeckett/FALCON

https://github.com/sjbeckett/FALCON
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The null models are computed by the software and represent similar matrices to the
case under study. The estimator of nestedness is the z-score of the τ -temperature. If
the τ -temperature tends to 0, it means that the model tested is highly nested compared
to the null-models. The threshold chosen to accept the null hypothesis of nestedness
is p < 0.05.
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Chapter 3

The evolution of cumulative
deprivation in Italy between 2007 and
2018: a multidimensional
copula-based approach

3.1 Introduction

"The interest in multidimensional poverty arose initially out of a concern
that monetary poverty measures were not sufficiently capturing the multiple
and overlapping deprivations experienced by the poor". Alkire (2018)

There is a broad agreement that there exist strong interrelations among different
dimensions of life and that their interaction defines the overall well-being status of a
person.1 In the last decade, the measurement of individual well-being, together with the
qualification of poverty conditions, have have been focusing on their multidimensional
nature. Multidimensionality in well-being and poverty implies to working on a wide
range of data types, from continuous and cardinal data to discrete and qualitative
data. The standard empirical approaches to measuring and interpreting individual
well-being provide two types of outcomes. One is a dashboard of indicators associated
with each specific dimension. The other one is a synthetic indicator aggregating all the
dimensions together. The former is mostly adopted by governments and international
institutions to observe population’s socioeconomic conditions. With the dashboard
approach, it is possible to define and measure separately the single contribution of each

1An extensive discussion is presented by Stiglitz et al. (2009)
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dimension involved. Both methods generally aggregate data across the population.
Among the most notorious examples of the dashboard of indicators on well-being are
the Sustainable Development Goals (SDG) proposed by the United Nations in the
Agenda 2030. In the specific case of Italy, the national statistical institute provides
an integrated description of the main economic, social and environmental phenomena
through the report on the Benessere Equo e Sostenibile2 (equal and sustainable well-
being).

The construction of synthetic multidimensional indicators is also prominent in the
field of socioeconomic studies. Techniques for multidimensional indices are generally
appearing in the measurement of well-being with data that are firstly aggregated across
the population and then in the dimensions. Some examples are the work on the Hu-
man Development Index proposed by the United Nations 3 or the Better Life Index
proposed by OECD4. Micro-founded studies are flourishing for the poverty measure-
ment instead. Following the work of Sen on defining multidimensional poverty, Alkire
and Foster (2011), Alkire and Foster, (2011) (A-F), and Bourguignon and Chakravarty
(2019) propose methods to identify the poor without aggregating the single-dimensional
information. They have observed various types of deprivation and constructed a rule
which determines the characteristics held by a poor or deprived person. A notorious
poverty indicator inspired by the A-F technique is the At Risk of Poverty and Social
Exclusion (AROPE) rate computed by the Eurostat.

As suggested by Decancq and Schokkaert (2016), when analysing well-being, there
are some fundamental aspects to follow: i) the within-dimension distributional charac-
teristics, ii) the identification of situations of cumulative deprivation in across various
dimensions, iii) the between-dimension interrelations. The former aspect requires fo-
cusing the attention on the heterogeneity that lies across the population concerning the
outcomes in a specific dimension. The latter two aspects, usually neglected, highlight
the correlation between the dimensions characterising a specific well-being or poverty
condition. A simple example can help in understanding why it is so.

Let assume we want to study the welfare conditions of two different societies through
the observation of two socioeconomic dimensions: income and health. Furthermore, let
assume that the observation is done on two representative individuals of each society.

The following tables describe the two societies in terms of the percentage scores, on
a 0-100 scale, of each person in each dimension.

If we would address a distributional study through a dashboard approach, we would

2Link to the BES report: https://www.istat.it/it/archivio/rapporto+bes
3Link to the UNHD reports website: http://hdr.undp.org/en
4Link to the OECD BLI reports website: http://www.oecdbetterlifeindex.org/
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Table 3.1: Comparing two hypothetical societal multidimensional distributions

(a) Society A
Individual Income Health I(xJi )

i1 10 90 50
i2 90 10 50
x̄j 50 50

(b) Society B
Individual Income Health I(xJi )

i1 10 10 10
i2 90 90 90
x̄j 50 50

end up with the result presented in the last rows of both tables 3.2a and 3.2b which
represent a simple descriptive parameter for each dimension distribution, i.e. the mean.
The conclusion drawn from this comparison would be that the two societies are equal
in terms of income and health distribution.

Alternatively, following a multidimensional composite indicator approach we could
end up with the last columns presented in the two tables. The outcomes of the compu-
tation coincide with a simple column-wise average aggregation of the individual-specific
scores in each dimension adopting equal weights. What would emerge from the analysis
is a completely different picture with respect to the previous result. Moreover, it would
be more clear that the two societies are different and that the society represented by
table 3.2b might be more unequal.

Although it represents a fundamental piece of information to describe the socioeco-
nomic status of the population of a country, it is not giving a complete discrimination
rule to make a comparison between two societies. Indeed, the weights assigned to the
two dimensions in the aggregation may vary, changing the outcome index score used for
the two societies’ comparison. Furthermore, both approaches miss the important fact
that there might be non-randomness in the in the repeated low outcomes appearing in
all the welfare dimensions of society b. In other words, the low outcomes recurring for
the same individual are a symptom of a condition of cumulative deprivation. In order
to individuate the phenomenon of cumulative deprivation and assess the relation the
observed society’s have with the distributional settlement, it is necessary to investigate
the within-dimensional dependence. The degree of dependence between dimensions of
people’s well-being can be a supportive instrument to understand how a welfare state
works to overcome the linkages between features of socioeconomic inequalities. For this
reason, the dependence structure can be enriching the current framework of studying
socioeconomic inequalities.

The nature of dependence is not a universally defined concept. In statistics, the
term dependence might be associated with the presence of association within two ran-
dom variables. The most known scale-invariant Kendall’s τ and Spearman’s ρ provide
a measure of the concordance between two random variables. The copula-based sta-
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tistical techniques can help to derive multidimensional correlation indices and allow
the investigation on the dependence structure within the dimensions of a multivariate
distribution function. An interesting aspect of such a technique is that it is rank-based
and, consequently, neutral to the unit of measurement of the dimensions involved. For
this reason, such statistical technique can be useful for studying the interdependence
lying across different dimensions of well-being. The shortfall of being rank-based is that
it can be used only as a relative measure for defining socioeconomic inequalities. As
other socioeconomic relative indicators, such as the At Risk of Poverty (ARP) from the
Eurostat5, it does not provide a fully informative within-country and between-country
description of the absolute conditions of poor and cumulatively deprived people. The
copula function is a joint cumulative probability distribution function with standard
uniform marginal distributions (Nelsen, 2007). Assuming to observe a set of dimension-
specific outcomes for a sample of individuals in the society, the copula function of this
multidimensional set will return the proportion of individuals in the society who are
ranked less than a specific combination of outcome positions. With the copula func-
tion, by mapping the society in terms of the joint positions in each well-being outcome
dimension, it is also possible to investigate the level of inter-dependencies across these
dimensions.

There is a growing literature which adopts copula-based methods to measure the
dependence among socioeconomic variables. Quinn et al. (2007) adopted the copula
framework for measuring the association between health and income. A contribution
of Aaberge et al. (2018) focused on the changing dynamics of the composition of top
incomes across time. Decancq (2014), Pérez (2015) and Pérez and Prieto-Alaiz (2016)
used copulas for the measurement of global dependence among the dimensions of the
Human Development Index, respectively using the Russian Panel data and data from
the Human Development Report. More closely related to multidimensional poverty is
the recent paper of García-Gómez et al. (2020) that used European Union Survey on
Income and Living Conditions (EU-SILC) data to assess the dependence within the
three dimensions used to build the AROPE index.

All the presented studies are using the copula techniques to investigate the over-
all dependence of the chosen features which are describing a multidimensional phe-
nomenon. This type of association measurement is also named global dependence.
Global dependence is a profoundly interesting tool, but it does not provide informa-
tion on the different patterns of dependence throughout the distributions of the di-
mensions considered. The correlation across the dimensions of well-being is non-trivial
and can vary as well, along with the distribution of each dimension considered. This

5Which is computed as the 60% of the mean equivalent household income of a country.



3.2. METHODOLOGICAL FRAMEWORK 37

paper is a proposal for investigation of the phenomenon of cumulative deprivation in
well-being dimensions. There will not be used the copula-based technique to assess
global dependence but to quantify the dependence occurring at a particular set of out-
comes. Decancq (2020) presents a technique that perfectly fits with the necessity of
investigating the dependence lying at the tails of the multidimensional copula function,
introducing the Diagonal Dependence Index.

In this paper, the evolution of cumulative deprivation in Italy between 2007 and
2018 is described, providing insights on the multidimensional dependence emerging
among the variables involved. The dimensions of well-being considered are selected
based on the recommendations of Stiglitz et al. (2009) in the Report of the Commission
on the Measurement of Economic Performance and Social Progress. The EU-SILC
database is used in order to construct the indices for each dimension. The dimensions
are income, job conditions, educational attainment, health status and housing quality.

The paper is structured as follows. In Section 3.2, a broad presentation of the
copula methodology and the diagonal dependence index. In Section 3.3, the data and
techniques used for constructing indices for each of the chosen dimensions. In section
3.4, the results are presented and discussed. In Section 3.5, conclusive thoughts and
ideas for further extensions of the study are presented.

3.2 Methodological framework

3.2.1 Copula Function

The copula function is a particular multivariate distribution function with uniform
univariate margins. Therefore, it is also described as a multivariate function which
aggregates all its marginal univariate components.

In this section, the intuition of what is a copula function and of the utility in
using it in the field of multidimensional well-being measurement is supported by a
more in-depth illustration of its statistical properties. The phenomenon of individual
well-being can be statistically ascribed by a random vector of multiple dimensions
(e.g. income, housing conditions, education, job conditions and health). Let the
d -dimensional random vector X = (X1, ..., Xd) describe the distributions of all the
j = (1, ..., d) dimensions of well-being. Given a set of realisations observed from the
sample, x = (x1, ..., xd), the cumulative distribution function of the random vector X,
is FX(x1, ..., xd) and it is defined as follows:

FX(x1, ..., xd) = Pr[X1 ≤ x1 and ... andXd ≤ xd] (3.1)
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This cumulative distribution function is expressing the proportion of people in the
society who have less than or exactly xj in every jth dimension of well-being. Equiv-
alently, the survival function F̄ (x) is the multidimensional complement to one of the
copula F . Specifically, the survival function contains all the outcomes of the random
variables which are jointly larger than the set of values x.6

The copula function of this multidimensional set can be derived by knowing the
marginal distributions of the d dimensions. More precisely, the positional outcomes
of our d-dimensional sample of well-being components, can represent the marginal
distributions of the cdf of the random vector X.7 Following from the probability
integral transform theorem, the normalised rankings of each dimension are uniformly
distributed as U(0, 1) and they represent the "ingredients" of the d-dimensional copula
function.

Given the random vector X and the position vector P representing the set of dis-
tributions of the ranked outcomes observed, being Fj(Xj) the marginal distribution of
the jth dimension of X, its copula function is a multivariate distribution CX defined
as:

CX(p1, ..., pd) = Pr[F1(X1) ≤ p1 and ... and Fd(Xd) ≤ pd] (3.2)

CX expresses the proportion of individuals in the society who are outranked by the
specific position set p = p1, ..., pd. The observations described by the components of
the random vector can be converted into pseudo-observations (Charpentier et al., 2007)
applying a simple ranking to all the series. The pseudo-observations keep the infor-
mation about the relative position of individuals in the distribution and ignore the
information concerning the absolute values describing the phenomenon.

By recalling the Sklar’s Theorem (1959), the second definition of the copula func-
tion provided by Nelsen (2007)8 can be hereby illustrated. This theorem depicts the
reason of the use of copulas in statistical applications to study dependence between
components of a random vector.9

The Sklar’s Theorem For any d -dimensional distribution function FX with uni-
variate margins F1, ..., Fd, there exist a copula C : [0, 1]d −→ [0, 1] such that, for all

6Bare in mind that, in the multivariate case, it is not true that F̄X = 1− FX .
7See section 3.6 for a more extensive explanation of the link between the positional outcomes, also

defined as rankings, and the marginal distributions of FX
8"[..] copulas are functions that join or "couple" multivariate distribution functions to their one-

dimensional marginal distribution functions."
9A simplified illustration of the Sklar’s Theorem is presented by Hofert et al. (2019).
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Figure 3.1: Independence Copula (two dimensions)

x = (x1, ..., xd) ∈ R

FX(x1, ..., xd) = CX(F1(x1), ..., Fd(xd)). (3.3)

And, if all Fj for j = 1, ..., d are continuous and strictly increasing, then CX is uniquely
defined in the unit hypercube [0, 1]d, and it is uniquely determined as Πd

j=1RangeFj.
Given that the inverse of a continuous and strictly increasing cdf FX is F−1 = F←,

the copula function of FX can be uniquely defined as follows:

C(p) = F (F←1 (p1), ..., F←d (pd)) (3.4)

and it is determined on p = (Range(F1) × ... × Range(Fd)).

The Sklar’s Theorem combines precisely the univariate marginal densities to form
a d -dimensional df. This result is extremely useful in order to study the dependence
among the components of a random vector.

Intuitively, in case of absence of any type of dependence among the dimensions,
the copula function would simply be the product of the d -margins. This example
is presenting the simplest copula (shown in figure 3.1). For a random vector P =

(P1, ..., Pd) with P1, ..., Pd ∼ind U(0, 1), the independence copula is

Π(p) =
d∏
j=1

pj, p ∈ [0, 1]d (3.5)
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In absence of interrelation across the dimensions, the aggregation function is a
simple product. There are other two types of copulas that need to be mentioned
because they represent two extreme cases. They are known as the Fréchet-Hoeffding
Bounds (F-H), and they represent the lower and upper bound of every copula. They
are respectively W (p) = max

{∑d
j=1 pj − d + 1, 0

}
and M(p) = min1≤j≤d {pj}, for

p ∈ [0, 1]d. For any given d -dimensional copula C, the theorem of Hoeffding (1940)
and Fréchet(1951) states that any copula C is point-wise bounded from below by a
lower bound W , and from above by an upper bound M . The relation among them is
the following:

W (p) ≤ C(p) ≤M(p), p ∈ [0, 1]d (3.6)

These two extreme cases are referred to the type of dependence taking place among
the dimensions. We could interpret the lower bound as representing complete counter-
monotonicity among the dimensions, and the upper bound as the complete co-monotonicity
among the dimensions.

Figures 3.2 and 3.1 present a bi-variate illustration of, respectively, the copula’s
extreme bounds and the independence case.10. In these figures, the lower bound density
is W (u1, u2), the upper bound density is M(u1, u2).

(a) Upper bound (b) Lower bound

Figure 3.2: Fréchet-Hoeffding Bounds (F-H)

10The plots are computed with randomly generated data using the plot commands of the R-Studio
package named Copula See Hofert et al. (2019) for further copula plot examples.
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3.2.2 The measures of dependence and the copula sections

The copula function is useful to investigate the dependence or association between ran-
dom variables. The dependence, or association, between dimensions of a multivariate
copula function is studied taking into consideration two of the extreme cases already
introduced. Namely, the co-monotonic case, which implies maximal dependence, and
the independence case in which there is a randomly determined association between the
elements of the copula. As already anticipated, the dependence can be investigated
as a global aspect characterising the whole distribution of the random multivariate
vector, or as a phenomenon that varies across the distribution. Since the intention is
to investigate the dependence across the well-being dimensions at low levels of their
distribution, the concept of tail monotonicity and, more specifically of tail dependence,
depicted by Nelsen (2007) can be very useful.

The tail monotonicity is a property of the copula when it emerges a stronger as-
sociation between its dimensions along the left and the right quadrant of their joint
distribution. Let X and Y be random variables, if

P [Y ≤ y|X ≤ x] ≥ P [Y ≤ y], (3.7)

which could be written also with the following inequality:

P [Y ≤ y|X ≤ x] ≥ P [Y ≤ y|X ≤ ∞], (3.8)

and if the conditional distribution function P [Y ≤ y|X ≤ x] is a non-increasing
function of x, then Y is left tail decreasing in X. In other words, for small values
of x the conditional distribution function is associated to a high probability, while its
value is not increasing in higher values of x.

Within our specific case, the left tail dependence is expressed by the conditional
probability that an individual having a position pj ≤ p in the distribution of dimen-
sion j, has a position pi ≤ p in the distribution of dimension i. Hence, the left tail
monotonicity implies positive quadrant dependence (PQD):

P [X ≤ x, Y ≤ y] = P [X ≤ x] P [Y ≤ y|X ≤ x] ≥ P [X ≤ x]P [Y ≤ y] (3.9)

With the left tail dependence in the copula framework, important insights for quanti-
fying the phenomenon of cumulative deprivation in well-being are shown. To provide
an intuitive geometric interpretation of tail dependence, it is necessary to refer to the
sections of the estimated copula function.
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The sections of a bi-dimensional copula are three: the horizontal, the vertical and
the diagonal section. In mathematical terms, the sections of a bi-dimensional copula,
C(u1, u2), are two-dimensional planes that slice the surface of the copula density func-
tion and fall perpendicularly on the (u1, u2) plane. While the vertical and the horizontal
sections are planes that slice the copula density at a fixed point of u1 or of u2, the di-
agonal section is the function in the [0, 1] interval defined as δC(p) = C(u1 = p, u2 = p)

where p can be any value in the [0, 1] interval. What is interesting for the issue of this
study is the diagonal section.

The following figure shows the contour plot of the independent copula. The diagonal
section of the copula is a plane falling perpendicularly on the plane of the contour
diagrams, and cutting it in the points in which u1 = u2 (where is the 45◦ line).

Figure 3.3: Contour plot of the Independence copula

The diagonal section show us the density function of the copula at a specific com-
bination of points of all its dimensions.

Decancq (2020) proposes a simple and intuitive way to observe the diagonal section
of the copula function with the construction of the diagonal dependence diagram. In
the diagonal dependence diagram there are two curves, the Downward Diagonal Depen-
dence Curve representing the diagonal section of the copula function and the Upward
Diagonal Dependence Curve representing the diagonal section of the survival function.
They are respectively showing the proportion of population that is outranked by a spe-
cific positional combination set and the proportion of population which is outranking
a specific positional combination.

Given a d-dimensional random vector X with copula function CX and survival
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Figure 3.4: Downward Diagonal Dependence Curve

function C̄X , its Downward Diagonal Dependence Curve DX is defined as:

DX(p) = CX(p, ..., p); ∀ p ∈ [0, 1] (3.10)

and its Upward Diagonal Dependence Curve D̄X is defined as:

D̄X(p) = C̄X(1− p, ..., 1− p); ∀ p ∈ [0, 1] (3.11)

The graphical representation of the diagonal section of a d-dimensional copula (fig-
ure 3.4) is a two-dimensional plot having on its x-axis the points previously shown in
figure 3.3 on the main diagonal. This line represents the set containing all the combi-
nations of positions between the d variables p = (p1, ..., pd) such that all the positions
in one dimension are equal to the positions in the other one. The y-axis represents the
proportion of population that is outranked by each position combination in the set. In
other words, the y-axis of the Diagonal Dependence Diagram coincides with the copula
density. Figure 3.4 is an example of how a Downward Diagonal Dependence Curve of
a d-dimensional copula function looks like.

The diagonal dependence diagram is meant to compare the diagonal section of the
empirical copula estimated on the multiple dimensions of well-being, with the case
of a co-monotonic copula. The co-monotonic copula describes a "feudal" or "cast"
society: being poor in one dimension automatically implies being poor in all the other
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dimensions. Given that the highest density of a two-dimensional co-monotonic copula
function lies exactly on the points in which the individual positions on each dimension
are the same, the diagonal section of a co-monotonic copula coincides with the 45◦ line.

The comparisons can be done as well between copulas and between survival func-
tions.

Decancq (2020) proposes a way to assess the dominance of a d-dimensional random
vector X on another Y according to the downward diagonal dependence orderings if

DX(p) ≥ DY (p); ∀ p ∈ [0, 1] (3.12)

and to the upward diagonal dependence orderings if

D̄X(1− p) ≥ D̄Y (1− p); ∀ p ∈ [0, 1] (3.13)

With both diagonal dependence orderings it is possible to operate a pair-wise com-
parison of two different copulas with respect to their proximity to the co-monotonic
case. In order to observe global dominance within the diagonal dependence orderings,
both cases shown in equations 3.12-3.13 have to take place.

Going back to the tail dependence concept, the co-monotonic case will present the
highest tail dependence. The tail dependence can be measured with the tail dependence
parameters. Let p be the point indicating the joint positions of individuals along the
dimensions and C(p, p) = δC(p) the diagonal section of the copula at p. If there is left
tail dependence, there exists a limit for p approaching 0 from above, of the conditional
probability that Y is less than the percentile p, given that X is less than the percentile
p. Analogously, there is right tail dependence if there exist a limit for p approaching 1
from below, of the conditional probability that Y is greater than the percentile p, given
that X is greater than percentile p. In other words, it would be necessary to look at the
density of the copula along its diagonal section as well as the density of the survival
along its diagonal section in order to measure the tail dependence.

Looking at figure 3.4, a parallel with the Lorenz curve arises immediately. Following
the principles of tail dependence in order to measure the level of diagonal dependence
among the components of a copula CX , Decancq (2020) proposes to calculate the area
underlying both the Downward and the Upward Diagonal Dependence Curves and de-
rive an index measure of downward and upward dependence. The aggregation of these
two measures is the Diagonal Depenendence Index (DDI). The Diagonal Depenendence
Index (DDI) represents a measure of proximity of the society described by the copula
with the society described by the co-monotonic copula. The greater this area will be,
the closer the curve to the diagonal line and the more unequal the society will be.
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The diagonal dependence index is obtained by averaging the downward and upward
diagonal dependence indices that are respectively:

δ−d (X) =
2(d+ 1)

∫
I
DX(p)dp− 2

d− 1
(3.14)

and

δ+
d (X) =

2(d+ 1)
∫
I
D̄X(p)dp− 2

d− 1
(3.15)

The computation of these two indices can give us an idea of the level of the interre-
lations lying across the dimensions of the phenomenon described by the sample data.
The resulting Diagonal Dependence Index is computed as follows:

δd(X) =
δ−d (X) + δ+

d (X)

2
(3.16)

As Decancq (2020) had demonstrated in his paper, the diagonal dependence index
turns out to be equal to the multidimensional generalisation of the Spearman’s Footrule.

3.3 Data

This paper presents an application of the index described by Decancq (2020) using
European Union Survey on Income and Living Conditions (EU-SILC) cross-sectional
data for Italy from the year 2007 to 2018. The sample size each year amounts ap-
proximately to 40 thousands records but I select a subsample of it representing the
population belonging to the workforce. A sample containing people aged 25-60 has
been selected. The exclusion of younger individuals is due to the fact that, in this way,
it is possible to avoid the observation of low schooling scores for who is still in educa-
tion, without counting those people ad deprived on the educational side. The sample
size is representative of a population which amounts approximately to 30 million people
every year. This population is composed of 50,2% females and 49.8% males.

The following five dimensions of well-being have been built: income, working con-
ditions, educational attainment, health status, housing quality conditions. Although
these dimensions provide a non-exhaustive description of the total well-being status,
they are retained to be relevant for describing the objective conditions of the well-being
of people from a socioeconomic perspective. The construction of the variables was, of
course, conditional to the availability of data in the EU-SILC yearly database. Each di-
mension has been computed separately and for every single year. Once constructed the
single dimensions, the data are scaled on a continuous sequence of uniformly distributed
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values. To do so, the individual dimensional-outcomes have been ranked. Table 3.3
provides a synthetic illustration of the dimension-specific sorting technique. Notwith-
standing the main concern is to extract the highest variability on each dimension from
the data, for all the dimensions the remaining ties have been sorted randomly.

The health variable is an estimate of the latent general health status that is extrap-
olated from the information on the Self-Assessed general Health (SAH) and corrected
by some personal characteristics and other health-related behaviour available in the
data set.

It has been demonstrated that the Self-Assessed general Health (SAH) is a good
predictor of other health measures such as life expectancy and medical care (Idler
and Benyamini, 1997). A pitfall of such a measure is that it provides a very low
variability among the respondents and difficulty to observe it from some distributional
perspective. Many empirical studies adopted Probit or Logit techniques to translate
the categories it into a cardinal measure representing the estimated underlying latent
health status taking a continuous form. These approaches have been validated by
the contribution of Van Doorslaer and Jones (2003). The latent general health status
has been estimated using data on the single-year declaration of self-assessed general
health (a factor which takes five levels indicating increasing health conditions) from
the EU-SILC individual data set. The estimation takes into account other health
habits/features, and some personal characteristics (presence of any chronic disease,
limitations in everyday activity, age and gender).

CallingX ′ the vector of the regressors presented, the estimated ordered logit model
of latent health status is: h∗ = X ′β + ε. Then, the predicted latent general health
status for each individual is h∗i = X ′iβ, also named z-score.
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3.4 Results and discussion

In this section, it is presented the outcome of the empirical five-dimensional copula
density function construction. Studying what type of multidimensional interaction
is associated with the highest density, the phenomenon of cumulative deprivation is
depicted and contextualised. The pair-wise yearly dependence comparisons and the
empirical diagonal dependence index are presented.

In order to derive the copula density, the population for each of the five dimensions
in every yearly sample is ranked. The ranked series of each dimension represents the
margins of the copula density. The empirical copula density is derived by grouping
the ranked population according to the combination of percentiles in each dimension.
Technically, the population is divided into N groups. Being q = number of percentiles
of the ranked series and d = number of dimensions, N equals qd, and quantifies the
grid size belonging to the Id = [0, 1]d set. In other words, N represents all the possible
combinations of the given quantiles among d dimensions.

The copula density can be evaluated simply by counting the proportion of society
that is falling in each of these groups of positional combinations. Given that it is not
necessary to compute an overall dependence measure, there is no need of ordering the
positional combinations. The only necessary information is the proportion of popula-
tion outranked by combination associated with the lowest quantile in each dimension.
In other words, we need to group people according to the highest observed quantile
position among all the dimensions. Thus, we can observe people who experience cu-
mulative deprivation by focusing on those whose maximal position is in the lowest
quantile.

The set of cumulatively deprived people includes who falls in the low-income class,
having a bad general health status, experiencing low-quality conditions of housing and
job, and not being highly educated.

For interpretative reasons, four quantile grouping have been selected for the compu-
tation: three, five, ten and a hundred percentiles. As expected, reducing the size of the
quantile observed implies a drastic narrowing of the sample size. This is due to the fact
that, the higher the number of percentiles in which we group people is, the smaller the
size of each positional combination group is. In the case of three percentiles, there are
N = 35 = 243 groups of people according to the possible combinations of positions per
percentile. In the case of hundred percentiles, there can be 1005 possible combinations.
Of course, not all of these combinations do appear within our sample. Both because
some combinations are not likely to be realistic; and due to limited size of the sample
used.
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If there was no dependence among these five dimensions, the probabilities for each
of the N combinations of the quantiles would always be the same. If q = 3, the
probability of the independence case is 0.004(= 1/243) for every positional group. If
q = 5, the probability for the independence case of every single positional group is
0, 00032(= 1/3125). For q being equal to 10 or 100, the independence case will assign
respectively a probability of 0,00001 and e( − 10) to each positional group.

The cumulative deprivation

In order to have an initial idea of the "importance" of cumulative deprivation, is pro-
vided a summary of its frequency of appearance in each yearly grid of combinations.
The intent is to check whether having contemporary low scores in all the dimensions
is frequently observed over the total possible positional combinations.

Table 3.4 shows the correspondent year in which the cumulative deprivation case
appears as one of the three most frequent percentile combinations. By simply ranking
all the possible combinations form the most frequent to the least frequent, it is provided
an identification for all years of the three most frequent combinations. Table 3.4 shows
weather the cumulative deprivation is appearing within the top three most frequent
cases.

Table 3.4: Presence of cumulative deprivation among three most frequent cases
Year 3 q 5 q 10 q 100 q
2007 Yes Yes Yes No
2008 Yes Yes Yes No
2009 Yes Yes Yes No
2010 Yes Yes Yes No
2011 Yes Yes Yes No
2012 Yes Yes Yes No
2013 Yes Yes Yes No
2014 Yes Yes Yes No
2015 Yes Yes Yes No
2016 Yes Yes No No
2017 Yes Yes Yes No
2018 Yes Yes Yes No

As it is possible to see from table 3.4, the phenomenon of cumulative deprivation is
taking place considerably in the sample if we observe it up to a division of the ranking
distributions into deciles. This phenomenon can already be a signal of the intrinsic in-
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terconnection lying among the selected dimensions. Rising the quantile amount reduces
the incidence of cumulative deprivation both due to the narrower reference population
in such high cumulative deprivation and also because of the limited representative
power of survey data regarding the extremes of the distribution.11

Figure 3.5 is the time series of the proportion of population associated with the
cumulative deprivation case. The cross-sectional weights have been applied in order
to observe the actual population quantities. The proportion of Italian population,
represented by the EU-SILC data, lying in the bottom 33% for all the dimensions, is
almost 1 million people in 2018.

Figure 3.5: Cumulative deprivation from a time series perspective

With Figure 3.6, the phenomenon of cumulative deprivation is shown in propor-
tion with the other possible positional combinations in the sample. In average, the
probability of falling into cumulative deprivation for those who belongs to the bottom
33% is around 3%. While, if we look at the people who are in the bottom 20% in all
the dimensions, it is 0.65%. In both cases, the average percentage of the population
falling in cumulative deprivation is respectively 2.4 and 4 times higher than the prob-
ability of the hypothetical case of no dependence. Figure 3.6 shows that the pattern
of cumulative deprivation intensity has a peak in the years 2014 and 2015.

The evidence is that, while the total population in cumulative deprivation is grow-
ing, it is possible to identify the years 2014 and 2015 as the years of the significant

11Survey data are useful to have access to a multidimensional set of information on individuals and
households. However, due to a limited sample size, too small quantiles of the sample distributions are
not well represented. Therefore, I give less importance to the 100 percentiles cumulative deprivation
case, while I will focus on the 3 and 5 quantiles population proportions.
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Figure 3.6: Cumulative deprivation from a time series perspective

increase of the coexistence of the deprivation in income, education, working condition,
housing quality and health status among residents in Italy. This episode is undoubt-
edly non-random, and it might reflect welfare policies that were not able to avoid a
vicious cycle of poverty. In order to give more solidity to this ascertainment, I describe
the characteristics of the cumulatively deprived people. Afterwards, the attention will
be back to the dependence analysis.

Who is cumulatively deprived?

It is hereby illustrated with more detail the composition of the population belonging
to the bottom 33 percent of the population distribution in each dimension, namely,
the cumulatively deprived people. For practical reasons, the proposed timeline for this
observation is for only one year, and the chosen year is 2014, as it is the peak of the
observed trend. In this year there were precisely 869,75 thousands people, the 2.9% of
total population represented by our sample. Table 3.5 illustrates the proportions of who
is cumulatively deprived by certain socio-demographic groups: gender, migration status
and activity status. It is noticeable that there is a higher proportion of females than
males within the cumulatively deprived population. Not surprisingly, the cumulatively
deprived people are mostly inactive or unemployed. Last, the 10, 5% of the cumulatively
deprived is coming from an Extra-EU country. 12

Figure 3.7 shows the proportions of the deprived males and females by activity
status.

12The Extra-EU population amounts to the 7, 8% of the 25-60 years old population.
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Table 3.5: Population in Cumulative Deprivation by Socio-Demographic Characteristics

Cumulatively deprived
population (Thousands)

Cumulatively
deprived
population

Gender Male 381,76 43,9%
Female 487,99 56,1%

Country Local 767,06 88,2%
EU 10,85 1,2%

Extra-EU 91,28 10,5%
Activity
status

Employed or
self-employed 182,00 20,9%

Unemployed 242,37 27,9%
Inactive 423,92 48,7%

Figure 3.7: Cumulatively deprived males and females by activity status

This picture is surprisingly explanatory as well of the strong gender gap with respect
to poverty and the participation to society. Being the population of male more present
among the employed population, 80% of the cumulatively deprived among the employed
people are men. The females progressively "catch-up" with the men when observing
the unemployed population, up to gain the primacy in the case of inactivity. Recalling
the proportions in table 3.5, it is shown that the inactive population represents almost
half of the total cumulatively deprived population.

Among the inactive population in 2014, the 81% are females.13 Thus, even if in
this study it is not provided a parametric estimation, I can expect that being a female
could represent a higher probability to fall in cumulative deprivation sharpened by the

13Personal elaboration, numbers refer to the table shown the Appendix B, table B.2
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higher probability for females of being inactive.

The estimated Downward Diagonal Dependence Curve

In the following section, the diagonal sections of the copula functions for each year are
presented and illustrated. The copula diagonal section is a slice of the copula density
taken precisely at the points in which the positions are equal in all the dimensions
(figures 3.4 and 3.3 already provided an intuitive illustration). The study of the diag-
onal section of the yearly copula allows us to compare the estimates with the cases of
co-monotonicity and independence. The co-monotonic case coincides with the upper
bound of the copula as defined by Fréchet-Hoeffding Bounds and introduced in the
methodological section. The co-monotonic copula function describes a society in which
the dependence between the dimensions involved is at its maximum level. In this so-
ciety, each position quantile represents a “cast” (Decancq, 2020), and each individual
who belongs a given quantile of ranking for one dimension will belong to the same
quantile of ranking for the other dimensions. By the contrary, when considering the
independence case, there is no statistical connection between the dimensions (that are,
in our case, income, job and housing conditions, educational attainment and health
status). Given the multidimensionality of the copula function, the diagonal copula
section is derived taking into consideration the population outranked by a specific set
of positional combinations such that: (pincome = pjob = phousing = peducation = phealth).
The higher the distance between the proportion of people falling in each specific com-
bination, from the upper bound curve is, the less dependent the dimensions involved
are.

Figure 3.8 shows what Decancq (2020) defines as the downward diagonal depen-
dence curve for each year. This curve coincides with the yearly copula diagonal sections
plotted together with the yearly upper F-H bound and with the diagonal section of a
five-dimensional independence copula.14

Despite at a first sight the co-monotonic case (the upper bound) may look far from
the empirical diagonal copula section, a more in-depth observation across the years
will show some time variations. Indeed, the proximity of the diagonal sections with
both the independence and the upper bound cases varies across time. In the years
2014 to 2016, it is possible to see that proximity between the diagonal sections with
their upper-bound is higher. Those years coincide as well with the years of maximal
distance between the diagonal copula section and the diagonal independence section.
From a time-series perspective, it is not possible to say yet which year corresponds to

14A zoom on the diagonal section of the 2014 copula is provided in the Appendix B with figure B.3
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Figure 3.8: Yearly downward diagonal dependence curves

the highest diagonal dependence level for all p ∈ [0, 1]. However, it appears to be a
clear dominance of the years from 2014 to 2016 for what concerns the copula diagonal
section.

Partial dependence orderings

Amore in-depth investigation of the inter-dimensional association is to analyse the pair-
wise comparisons of each yearly diagonal copula section. With the pair-wise comparison
it is possible to provide a partial ordering of dependence among the years. Table 3.6
indicates when the row-year is dominating the column-year for the downward diagonal
dependence ordering (D), and the upward diagonal dependence ordering (U). The two
results consist respectively of a comparison among the two diagonal sections of the
yearly copulas and survivals. The presence of the zero indicates the indecisiveness of
the result. The indecisive cases take place when, comparing one by one the percentiles
of two different yearly copula sections, we do not find a strict dominance of one copula
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section against the other one. 15

Table 3.6: Partial dominance comparisons
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2007 - 0 0 0 0 0 0 0 0 0 0 0
2008 0 - 0 0 0 0 0 0 0 0 0 0
2009 U 0 - 0 0 0 0 0 0 0 0 0
2010 0 0 0 - 0 0 0 0 0 0 0 0
2011 U U U U - 0 0 0 0 0 0 0
2012 0 0 0 0 0 - 0 0 0 0 0 0
2013 U U 0 D,U 0 D,U - 0 0 0 D 0
2014 D,U D,U D,U D,U D,U D,U U - 0 0 0 0
2015 U U D D,U 0 D,U D,U 0 - 0 D D
2016 0 0 0 U 0 U 0 0 0 - 0 0
2017 0 0 0 0 0 0 0 0 0 0 - 0
2018 0 0 0 D 0 0 0 0 0 0 0 -

This table shows that the years 2013 to 2015 are dominating the past ones in terms of
dependence comparisons. At the same time, more inconclusive is the comparison with
the most recent years, that only in few cases appear to be downward dominated by the
years 2013 to 2015. This result provides useful insights on when the multidimensional
dependence within our sample is mostly concentrated. Unsurprisingly, it emerges that
the years of higher dependence coincides with the years of the increase in the sample
people in cumulative deprivation.

The Diagonal Dependence Index

The Diagonal Dependence index as it is presented in equations 3.14, 3.15 and 3.16,
is shown in figure 3.9. Its computation is provided over different combinations of
dimensions. The case in which all the five dimensions are present and the cases in
which one dimension at a time has been removed. This approach represents a way
to assess the sensitivity of the overall diagonal dependence to the single dimension
contribution.

As it is possible to see from figure 3.9, the level of dependence has raised in the
last ten years. Its trend results smoother in comparison with the trend of people in
cumulative deprivation, but it clearly shows a growing phenomenon. It is not easy

15The partial dominance analysis is done by using the data on the copula and diagonal survival
sections of the ten percentiles case.
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to draw conclusions on the nature of this increase, but a natural consequence of an
increased diagonal dependence is represented by an increase of the risk of falling into
the poverty trap. The higher the dependence observed is, the more likely we expect to
observe cumulative deprivation as a growing phenomenon.

Figure 3.9: Downward diagonal dependence indices: comparing the full 5-dimensional set
with 4-dimensional sets

The yearly diagonal dependence index shows a positive trend among all the pre-
sented dimensional combinations. Focusing on the 5-dimensional case, the positive
trend slowed down after its peak in 2014 to remain stable at around 11%. As ex-
pected, the removal of health status causes an increase of observed dependence. Given
that health, more than the other dimensions, is influenced by demographic and ge-
netic conditions, especially when considering a vast sample age interval such the one
of the workforce. The removal of the income dimension reduces the magnitude of the
multidimensional dependence phenomenon especially in past years. Nevertheless, this
specific dependence case rapidly catches-up other dimension combinations in more re-
cent years. The increase of dependence among all the other socioeconomic dimensions
is getting frighteningly stronger.

Table B.1 form the Appendix B contains the p-values resulting from the t-test of the
mean difference applied to every couple of indices considered. Making this comparison
is a way to verify that the contribution of each dimension is relevant to describing
the puzzle of the multidimensional dependence among socioeconomic facets of life. As
it emerges from Table B.1, the average yearly DDI in the case of all dimensions is
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not statistically different from the average yearly DDI in the case of not including
education. The removal of this dimension does not represent a loss in terms of the final
multidimensional dependence, meaning that the education dimension may not add the
most substantial information to the story because it is already proxied by the other
dimensions. Despite that, the other comparisons do not show the total "in-utility" of
considering it as a dimension of cumulative deprivation. Thus, we proceed using the
five dimensional case as the most complete case in terms of information considered and
reported.

Cumulative deprivation and other poverty measures - Part 1

In order to contextualise the explanatory value of the diagonal dependence index and
the cumulative deprivation condition, a comparison with other socioeconomic indicators
is provided.

Figure 3.10 represents a comparison between the cumulatively deprived and people
counted by the AROPE rate as being at risk of poverty and social exclusion. The
AROPE is an index number indicating the presence of the following three phenomena:
i) being at risk of poverty in terms of low income (ARP), ii) being severely materially
deprived (SMD), iii) being in a low work intensity condition (LWI). The presented
comparison is for 2014, being the year with the highest diagonal dependence.

Figure 3.10: Percentage of cumulatively deprived who are counted in the AROPE index

Given that part of the conditions accounted in the AROPE rate are in a different
way included in the cumulative deprivation counting, we observe that a considerable
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portion of cumulatively deprived people are as well accounted within the AROPE in-
dex. Furthermore, we can notice that approximately the 83% of cumulatively deprived
people are counted in at least one of the AROPE dimensions combinations.

Of course, cumulative deprivation is a rarer phenomenon because it accounts for
low educational attainment and bad health status, which are entirely neglected by the
European poverty index. In this way, the population involved in the count is sensibly
lower than the total amount of people at risk of poverty and social exclusion.

Figure 3.11 provides a yearly comparison of the proportions of cumulatively de-
prived people with two relevant estimates of the incidence of absolute and relative
poverty: the AROPE rate and the incidence of absolute poverty computed by the
Italian National Statistical Institute (Istat). The two indicators represent two very dif-
ferent methods of explaining a social phenomenon that is currently intensely debated.
The absolute poverty is expressing the exposure to poverty not only with respect to
income, but also with respect to the purchasing power of income.

Figure 3.11: Comparison between cumulative deprivation incidence (left-axis) and other
socioeconomic indicators: AROPE rate (right-axis) and Absolute poverty incidence (left-axis).

From figure 3.11 it emerges that, while the trends are all increasing, the mag-
nitudes vary in a puzzling way. Despite the cumulative deprivation is conceptually
closer to a relative poverty measure, it captures the interaction between a poor income
and poverty in participating to society through the acquisition of the means of living.
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Notwithstanding, such a measure can be placed half-way between the two extreme rela-
tive and absolute poverty indicators. Further investigation of this evidence is provided
in the following paragraph.

Cumulative deprivation and other poverty measures - Part 2

There are few studies dealing with comparisons between the relative and absolute
poverty thresholds, among the most relevant examples is the study of Goedemé et al.
(2017). Following the intention of Goedemé et al. (2017) to contextualise the poverty
thresholds within the peculiarities and needs related with different household types and
geographic areas, it is hereby presented a graphical comparison between the two mostly
representative estimates of poverty income thresholds with the cumulative deprivation.
In this matter the income thresholds for the relative and absolute poverty estimates
are related with the maximum income observable within the cumulatively deprived
sample. More specifically, the "cumulatively deprived income threshold" is identified
with the maximum level of equivalent household disposable income observed within
the cumulatively deprived sample, distinguishing for the different household type and
geographic location (aggregating NACE-2 into three areas: North, Centre and South;
and distinguishing by urbanisation level).

Given the many differences in data availability between the three different indi-
cators considered, the yearly descriptive comparison is provided for selected observed
thresholds:

• two adults and two minors (between 0 and 17 years old) for 2007 and 2011

• single person household for 2010 and 2013

The Istat estimates available to the public on absolute poverty thresholds are
missing after 2013. The relative poverty threshold estimates come from the Euro-
stat database and are provided aggregates for the overall Italian territory but they
represent the chosen household type. The following figures show the comparison for
selected years between the time interval under study. As it emerges from figures 3.12
and 3.13, the maximum observed income within the cumulatively deprived group of
people belonging to the two adults and two children household type is always system-
atically lower than the relative poverty threshold. This implies that these people are
counted as well in the absolute and relative poverty indices.

The observed income levels vary across the Italian territory and most of the times
they imitate the absolute poverty threshold trends, even if being constantly below
it. This implies that the cumulatively deprived population belonging to this specific



3.4. RESULTS AND DISCUSSION 60

household type is not considered, as far as the Istat estimates show, to have enough
adequate material means to live with.

A slightly different picture is provided by the single person household type, figures
3.14 and 3.15. In this matter, the cumulative deprivation income threshold may happen
to be higher than the two poverty thresholds, meaning that, this type of deprivation
may not be counted within the standard poverty measurement.

Figure 3.12: Poverty thresholds comparisons

Figure 3.13: Poverty thresholds comparisons
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Figure 3.14: Poverty thresholds comparisons

Figure 3.15: Poverty thresholds comparisons
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3.5 Conclusions

This paper represents a contribution to the studies on social inequalities from a multidi-
mensional perspective. This analysis proposes an applied measurement of the statistical
dependence whose aim is to underline a group of well-being ’dimensions’.

Coming from the proposal of Decancq (2020), the tool adopted for this study is
the copula function evaluated for the multidimensional set of well-being dimensions.
The within-dimensional perspective has been inspected from the point of view of the
population with similar outcomes in all the dimensions, to observe the phenomenon of
cumulative deprivation. When applied to data on socioeconomic deprivation, this tool
can provide useful insights for the integration of the standard poverty indicators. This
is due to its capacity to detect the degree of statistical interrelation across multiple
dimensions when observing a specific part of their distribution.

The cumulative deprivation condition is computed through the observation of the
relative positions of individuals within the sample distribution. Therefore, the process
to define the belonging to a certain status has a relativistic perspective. As it has been
already argued within poverty studies, poverty cannot be solely measured in relative
terms since its definition requires to capture what are the basic needs of people and
households within different contexts of life.

Despite that, keeping the multidimensional perspective to the measurement of
poverty constitutes a pillar for quantifying it in more absolute terms.

Such an approach is thus thought to be essential for investigating the effects of so-
cioeconomic inequalities and for exploring an aspect that has been frequently neglected
by the standard approaches studying inequalities: the interaction among different so-
cioeconomic deprivations. The index of multidimensional dependence obtained within
the copula-based technique, provides a statistically solid technique and a valid support
to the general definition of poverty conditions.

The study has been carried out with EU-SILC data on Italy between 2007 and
2018, the dimensions selected for the experiment are: the income, the educational
attainment, the labour, health and housing conditions. The research outcome shows
an increasing trend of the cumulatively deprived population in Italy together with an
increased diagonal dependence. This evidence is considered a symptom of a strong con-
nection between income and other life dimensions. Unsurprisingly, the weaker agents
of society (females, migrants, unemployed people), turned out to be more frequently
counted among the cumulatively deprived. The presented multidimensional depen-
dence study has been contextualised within the wider poverty indicators framework
through a comparison of the income levels of cumulatively deprived people with the
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income thresholds of absolute and relative poverty indicators for Italy. From this anal-
ysis it emerges that the income of the cumulatively deprived households is constantly
lower than the relative poverty threshold (the 60% of the average income per capita)
for all household types considered, whilst it shows to be fluctuating (from above and
from below) around the absolute poverty threshold. The dependence among dimen-
sions of well-being can enable investigating the ability of welfare systems to eliminate
barriers characterising the unequal distribution of access to public services. Future
extensions of the study can go in several directions. For instance, it can be functional
to investigate through a parametric assessment the predictive power of several individ-
ual characteristics in determining the cumulative deprivation incidence. Additionally,
an extension of the diagonal dependence index measurement to other countries can be
beneficial for its interpretation. The disruption of both time and cross-country perspec-
tive would undoubtedly provide further understanding in order to compare different
welfare systems.
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3.6 Theoretical Appendix

3.6.1 The positional outcomes are the margins of the cumula-
tive distribution function FX

The marginal distribution function of the jth dimension of FX , is denoted as Fj and
defined as:

Fj =
∂FX(x1, ..., xd)

∂xj
for j ∈ (1, ..., d) (3.17)

In probability theory, the marginal distribution of a multidimensional cdf expresses
the probability of Xj to have outcome of at least xj for every possible value of all the
other dimensions involved. The marginal distribution of our original multivariate cdf
for dimension j can also be defined as Fj(xj) = F (∞, ...,∞, xj,∞, ...,∞) = Pr[Xj ≤
xj], xj ∈ R.

The marginal distributions for each component can be easily derived using their
ranking distributions. When computing the rank ordering of each of the sample reali-
sations of the continuous random variable Xj, it is possible to observe the probability
of realisation of such outcome for any given value of all the other i 6= j dimensions.
In other words, the rank ordering allows us to derive a marginal distribution for each
dimension.

The marginal distribution for every outcome xj is exactly expressing the proportion
of population who has weakly less than xj in dimension j. By looking at the individuals
who show such an outcome, we can derive their rank position expressed as a real number
scale between 0 and 1.

The position vector p = (p1, ..., pd) is describing the positions assumed by a single
person in all the considered dimensions of well-being. The re-scaling procedure on the
rank values of each entry of the position vector lead to observe the transformed entries
taking values in the space [0, 1]d. When the position vector of individual i is equal to
(0, ..., 0), it implies that the person is outranked in all the dimensions. Otherwise, in
case the positional vector of i is (1, ..., 1) this implies that this person is top-ranked in
all dimensions. Concluding, it is possible to say that Pj = Fj(Xj), so the position of
the individual i in dimension j with respect to the others, can represent the marginal
distribution function of the random variable Xj.

3.6.2 The probability Integral Transform Theorem

The probability integral transform theorem is useful for our case because it allows
to say that all the marginal distributions that can be derived from the positional
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random vector follow a standard uniform distribution. In more technical terms, if X
is a continuous random variable with cumulative distribution function FX(x) and if
Y = FX(X), then Y is a standard uniform random variable.

Demostration: Let X be a continuous random variable with cdf FX = Prob(X ≤
x); let Y being another continuous random variable defined as Y = g(X). Let g
be strictly increasing and differentiable, thus g−1 uniquely exists; let g = FX . The
distribution of Y is obtainable as follows.

FY (y) = Prob(Y ≤ y)

= Prob(FX(X) ≤ y)

= Prob(X ≤ F−1
X (y))

= FX(F−1
X (y))

= y

(3.18)

According to the properties of the uniform distribution with margins a = 0 and b = 1,
FY = y means that FY ∼ U(0, 1).
In our specific case, Y equals the position random variable defined before as Pj =

Fj(xj). Following the probability integral transform theorem, Pj will be uniformly
distributed on the interval [0, 1].
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Chapter 4

The roots of health inequalities

4.1 Introduction

"All animals are equal, but some animals are more equal than others."
Animal Farm, G. Orwell (1989)

It is a fact that the health conditions vary greatly across people both within and
between countries (WHO, 2013)1. The variability of health conditions between people
is not only and exclusively due to biomedical or genetic factors, but also to socioe-
conomic factors. Health inequalities, as income inequalities, strongly depend on the
context in which people are born, live, work and age. The debate on health inequal-
ities owes to the main contributions, among all, of Marmot (2005); Sen et al. (2004),
the Commission on Social Determinants of Health and the World Health Organization
(2008). The COVID-19 pandemic had a violent impact on the world-wide economies,
bringing the discussion of health on the top of the governments’ agenda. Unsurpris-
ingly, the distribution of health conditions and health-care access across the population
has gained an increasing attention among researches and policy makers.

There can be a different political and philosophical point of view regarding the social
judgements towards the determinants of socioeconomic inequalities. Despite that, the
general idea about them in modern economies is that the market is not able to lead to
an equal distribution of the outcomes in society, and there exists a set of characteristics
beyond the individual’s control that impact on the unequal societal outcomes.

For what concerns health itself, there are structural difficulties in empirically de-
termining how health inequalities are affected by socioeconomic conditions. Indeed, a
person’s socioeconomic background can have a direct influence on the state of their

1The World Health Organization (2013) defined health inequalities as: "avoidable inequalities in
health between groups of people within countries and between countries".
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health and indirectly affect it through their actions and lifestyle habits. In the empir-
ical studies on health inequalities, the capability to disentangle the exact contribution
of each source of inequality depends on the researcher’s normative assumptions on the
individual responsibilities.

The Equality of Opportunity theory shifts the attention of the traditional welfare
theory from studying only the outcomes, to studying the inputs and provides a valid
theoretical background to model the unequal distribution of health outcomes.

In societies increasingly sensitive to issues of equal distribution and inclusive eco-
nomic policies, the theory of equality of opportunity has gained its place in the debate.
Equality of Opportunity theory is based on the fact that individual advantages ob-
servable as income, education or health are determined by attributes for which it is
morally correct to hold individuals accountable (fair inequalities), and by those cir-
cumstances that are beyond individual’s control, and for which the individuals should
not be held accountable (unfair inequalities). The models of Inequality of Opportunity
(IOP) address the analysis of the contribution of each factor to the outcome (advantage
or disadvantege) formation.

The main precursors of the Equality of Opportunity theory in political philosophy
are Rawls (1971), Dworkin (1981) and Cohen (1989). Equality and freedom are two
values emphasised in this theory. Ideally, equality of opportunity is achieved when
the life lottery effect on life plan choices is abolished and all individuals are free to
choose from the same set of opportunities. However, these two principles are not
always compatible. In the empirical studies, any definition of Equality of Opportunity
requires a balancing process between equality and freedom.

The principles of equality and freedom have been translated into the Inequality of
Opportunity models as two types of policy actions against unequal distribution: the
compensation principle and the reward principle. As they are defined in this theoretical
framework, the two principles may not be always compatible with each other. Meaning
that the prevalence of one does not guarantee the realisation of the other. The first
one states that any inequality due to circumstances beyond the individual’s control is
unfair and should be eliminated. The second specifies how well-being should relate to
responsibility characteristics.

Recognising the existence of "unfair" sources of inequality would thus raise the
question: to what extent hold people responsible for their preferences and choices? For
answering this question, Fleurbaey and Schokkaert (2009) refer to the debate on the
equality of use and equality of access. On one side, the equality of access can be in-
tended as a non-discriminatory principle, requiring that all individuals have the same
means while they can make different choices regarding their outcome generating pro-



4.1. INTRODUCTION 70

cess. On the other hand, the proponents of equality of use require that all individuals
have the same chances to obtain valuable outcomes no matter what their means and
choices are.

We can identify, in the literature on Inequality of Opportunity (IOP), two main
schools of thought regarding the role of the policy makers in correcting these distortions.
On one side, there is the model defined by Roemer (1998) which conceives inequalities
in society as a materialistic phenomenon, where the societal distribution of outcome
is a result of the distribution of the circumstances. On the other side, Fleurbaey and
Maniquet (2012) state that there are some individual choices and preferences which
can be observed and should be respected comparing the outcomes. While the former
conceives a policy intervention to compensate for the inequalities originated in the
society by sources beyond individual control, the latter includes also the objective of
ensuring that arbitrary causes of inequality are rewarded.

The empirical non-parametric studies measuring IOP basically refer to the Roeme-
rian model framework which requires to divide the initial population in groups defined
by socioeconomic characteristics, also named population types. The effort is assumed
not to be observable in absolute terms. Most of the Roemerian IOP empirical appli-
cations estimate a counterfactual distribution of the group-specific outcome variable,
in order to isolate the "socially-defined" unfair components from the original outcome
distribution. Up to the IOP theory, if the types are precisely describing the full con-
tribution of non-arbitrary circumstances, the between-types inequality coincide with
the unfair inequality. Alternatively, Fleurbaey and Schokkaert (2009) propose to take
into account for the reward principle a sort of "responsibility-sensitive" component in
the analysis of the health distribution. Departing from the traditional partition á lá
Roemer (1998), F&S propose a model to isolate the exact (direct and indirect) contri-
bution of the non-arbitrary factors on the health inequalities and evaluate the direct
unfairness and the fairness reward in the society.

From the vast literature on IOP, we can distinguish the various empirical appli-
cations on the base of technical and theoretical characteristics, e.g. i) the way to
group people in socioeconomic groups which define the non-arbitrary sources of in-
equality, ii) the estimation method chosen for deriving the modified distribution, iii)
the assumptions concerning the observation of individual responsibilities. While there
is no general agreement about which is the best estimation approach, the adoption
of data-driven type-partitioning of the population is notably bringing improvements
to the study of IOP (Brunori et al., 2018). Furthermore, studies focused on income
inequality of opportunity, have mostly used a measurement approach which is agnostic
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with respect to the effort characterisation. Notwithstanding, the main concern of the
researchers of IOP in income have been the measurement of the relative portion of
inequality originated from the family background, as a ratio of total inequalities.

On the side of health IOP, many empirical contributions had the ambition to iden-
tify the indirect effect of socioeconomic background on health outcomes, bringing the
lifestyle into the picture as a proxy of the individual effort. Jusot et al. (2013) worked
on disentangling the direct and indirect contribution of the circumstances on the health
status by estimating parametrically the effort response to circumstances and using this
prediction to estimate the health response to effort. One pitfall of performing a single
regression for the whole population is that it is imposed a constant response of effort
to all socioeconomic categories. Not considering the heterogeneous effect of lifestyle
behaviours on outcome may represent a weakness for this type of analysis. Hence,
Carrieri and Jones (2018) presented the estimation of the direct effect of effort, al-
lowing it to vary in its parameters across types. Although their attempt to describe
the interaction of circumstances and effort through heterogeneous slopes is getting
closer to the theoretical intention of Fleurbaey and Schokkaert (2009), the authors
provide a self-defined population type-partition. As a consequence, they encountered
the traditional problem affecting all the standard non-parametric applications of the
Roemerian partitioning: the course of dimensionality. Addressing the limitations af-
fecting this literature on the definition of types, Carrieri et al. (2020) are presenting a
data-driven partitioning approach to derive the population types and to estimate the
type-specific lifestyle-to-effort relations. More precisely, they are using Finite Mixture
Models (FMM) to find the latent population subgroups as a class mixing the given
circumstances and to model the dependent-to-effort relation.

One of the major problems emerging from the health IOP studies is the recourse to
self-reported health status to proxy individual health. An example of a more objective
health definition is the Allostatic load measure, which has been recently constructed
and used in the IOP literature Carrieri et al. (2020); Davillas and Jones (2020). Al-
lostatic load is a cardinal biological measure aggregating nurse-recorded health infor-
mation dimensions, its observation is available in two waves of the UK Household
Longitudinal Survey (UKHLS).

With this paper, the aim is to extend the literature on IOP in health, by bring-
ing into the picture the interaction between the different socioeconomic contexts and
lifestyle behaviours. This issue is addressed using the Model-Based recursive Partition-
ing (MOB). MOB is a tree-based supervised learning algorithm developed by Zeileis
et al. (2010). The algorithm fits a regression tree based on predetermined partitioning
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variables and estimates a statistical model in each terminal node. Intuitively, the al-
gorithm initially fits the full-sample model and recursively searches for a partition in
two sub-samples that would allow the linear model to better fit the data. MOB stops
splitting the sample when no further split would result statistically significant.

The innovative contribution of this approach states in the fact that the sole relation
between health and effort proxied by the lifestyle behaviour is estimated, allowing the
effort to vary in its intercept and slope according to different relevant circumstantial
realisations. Thus it is possible to identify the indirect effect of circumstances through
the different parameters relating the health and lifestyle. With this paper, estimates
of the Direct Unfariness (DU) and Fairness Gap (FG), following the methodology of
Fleurbaey and Schokkaert (2009) are presented and discussed.

Such an application, as far as it is concerned, is new to the literature of IOP. The
empirical application is done using the same data source of Carrieri et al. (2020). This
exercise focuses on both providing insights on the IOP in health and in assessing the
validity of new possible data-driven techniques to be adopted for IOP empirical studies.

In Section 4.2, an extensive illustration of the IOP theoretical framework is pre-
sented; discussing as well the main partitioning and estimation techniques adopted in
the literature. In Section 4.3, the empirical characterisation the approach is displaced.
The data are illustrated in Section 4.4. Section 4.5 contains the results and a related
discussion. Section 4.6 conclusion remarks are provided.

4.2 Inequality of Opportunity: from theory to prac-
tice

The Equality of Opportunity theory provides a framework to practically measure IOP
based on different definitions of it. All the definitions provided by the models illustrated
in the following section share an important consideration: there is a portion of inequal-
ity in society that can be defined unproblematic, being due to responsibility matters;
and an unfair portion of inequality which is, instead, determined by the socioeconomic
circumstances. The models propose different ways to disentangle the contributions of
fair and unfair sources but they allow some normative space for attributing responsibil-
ities to individuals. Therefore, the decision regarding which factors are to be classified
as circumstances beyond individual control and which are to be considered as personal
choices, is left in the hands of the society (and the policy maker).

The literature on Inequality of Opportunity has its roots in economic theory with
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the seminal contributions by Roemer (1998) and Fleurbaey and Schokkaert (2009).
The different definitions of inequality of opportunity provided by these models led to
different measures of IOP. What follows in the next section is an illustration of both
models from a theoretical and methodological point of view.

4.2.1 Model frameworks

Roemerian model

Let the population be finite and indexed as i ∈ {1, ..., N}, where N is large. Each
individual i has three attributes {yi, Ci, ei}, respectively, the individual advantage (e.g.
income or health status), the circumstances (e.g. demographics, family background),
and the effort (e.g. hours worked, lifestyle).

It is possible to partition the population into K types according to the set of
circumstances. The types are, thus, based on personal non-arbitrary characteristics.
Given that the elements included in the circumstances are finite and each one has a
discrete domain, the partition of the whole population onto finite groups is given by
K : Π = {T1, ..., Tk, ..., TK}. This partition is homogeneous, hence, each group is non
overlapping Tl ∩ Tk = �, ∀l 6= k.

With the type partitioning we can observe population grouped in different opportu-
nity sets. Within each group, people are facing the same non-arbitrary circumstances
of life.

While the circumstances are assumed to be known by the policy maker, the effort
exerted by the individual is not necessarily observable. This characteristic is not a
limitation for its identification because the outcome is assumed to be a function of the
effort, yi = f(ei). Furthermore, the outcome is assumed to be monotonically increasing
in the effort, so the following statement is always true, for every k ∈ K groups:

yki (ei) ≥ ykj (ej)⇐⇒ eki ≥ ekj , Tk ∈ Π, i 6= j, ∀ei, ej ∈ <+ (4.1)

Furthermore, the effort is not independent from the circumstances and, as a con-
sequence, its type-specific distribution should be accounted as a characteristic of the
type. Accordingly, the absolute value of effort, when observable, is not an accountable
information due to its type-specificity.

In the case in which the effort is not observable, the Roemer Identification Axiom
identifies the rank position of the person in advantage distribution within a type-group
with the relative effort exerted ek(π). In a world in which opportunities are equally
distributed, the income is uniformly distributed across all types for a given amount of
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effort exerted.

yki (π) = ylj(π), ∀π ∈ [0, 1] ; i 6= j, ∀Tk, Tl ∈ Π. (4.2)

The effort rank and the advantage rank coincide by assumption of the model,
eti(π) = yti(π). It implies that a society achieves equal opportunity when the differ-
ent type-specific advantage distributions are the same:

F k(y) = F l(y), ∀l, k|Tk ∈ Π, Tl ∈ Π (4.3)

Summarised in equations 4.2-4.3 are the strong equality of opportunity assumptions
of Roemer. A weaker IOP assumption is the equalisation of the type-specific income
across different types, µk.

µk = µl, ∀l, k|Tk ∈ Π, Tl ∈ Π (4.4)

Considering the effort degrees as the quantiles of the effort distribution, a further
population partition can be realised. This partition is called tranches, and allows to
compare the effort degree across the different types. The partition of the population
into tranches is defined as Q : Θ = {S1, ..., SQ}.

In the literature of IOP, the within-types (between-tranches) inequality is accept-
able, while the between-types (within-tranches) inequality is the target of the com-
pensatory policies. The policy that equalises the opportunity tries, can be of different
strength and complexity with respect to the type of redistributive transfers.

The ex-ante compensation states that "people should face the same opportunity
set, independently from the effort they exert". The policy would imply to transfer
and redistribute across people belonging to different types, in order to equalise their
average circumstance-related income.

The ex-post compensation proposes that "people exerting the same amount of effort
should have the same income, regardless of their circumstances". The ex-post compen-
satory policy requires a more complex organisation of transfers among the people in
order to completely equate the type-specific income distributions conditional to effort.

If we look at the type-specific income distributions at figure 4.1, we can see that, fol-
lowing the ex-ante criterion, no IOP emerges from the comparison of the mean income
of type 2 and type 3, while type 1 will represent the policy recipient. The ex-ante IOP
will be measured looking at the differences among the mean income of people belonging
to type 1 with respect to the mean income of people in type 2 and 3. Conversely, if
we measure IOP with an ex-post criterion, a re-distributive transfer policy would be
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Figure 4.1: Type-specific income distributions

necessary to equate all the three distributions.

Fleurbaey-Schokkaert model

This model is rooted from the "responsibility-sensitive egalitarianism" proposed by
Fleurbaey (1995), Fleurbaey et al. (2008), Fleurbaey and Schokkaert (2009) and Fleur-
baey and Maniquet (2012). In this framework, the outcomes generated in the society
are determined by factors beyond the individual’s control. However, people are held
responsible, to some extent, for their achievements.

Recalling the duality between the principle of reward and compensation, the model
that is hereby illustrated is proposed by Fleurbaey and Schokkaert (2009) and presents
two measures of inequality of opportunity which respectively refers to the two prin-
ciples. While Roemer mainly associates its models to the IOP in income, Fleurbaey
and Schokkaert, (2009) (F&S) focus their attention in the inequalities of opportunity
in health consumption and outcomes.

As in the Roemerian model, the approach of F&S requires the original distribution
of health outcomes to be replaced by a counterfactual distribution reflecting all and
only unfair health inequalities H̃.

In order to be fully consistent with both the reward and compensation principle,
H̃ would require to:

• preserve the outcome inequality between individuals with the same effort degree
(within-tranche inequality)
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• do not preserve any outcome inequality between individuals characterised by the
same circumstances (within-type inequality)

Fleurbaey et al. (2008) have discussed the impossibility of computing a counterfac-
tual distribution which is consistent with both conditions.2 What follows this consider-
ation is the formulation of two distinct measures of inequality of opportunity which are
respectively consistent with one principle, while preserving consistency for the other
principle at least for a reference type or effort degree.

Let us assume that the policy maker can only observe two factors influencing in-
dividual health status, income and lifestyle. The latter represents, to some extent,
a source of inequalities for which the people can be hold responsible for, namely the
effort. Furthermore, let us assume that the effects of the income and lifestyle factors
(l) on health are additive and separable on the health status. The health status of i
can be represented as a function

hi = h(yi, li); ∀ i ∈ (1, ..., n). (4.5)

A different health status between two individuals hi(yi, li) 6= hj(yj, lj) can be ac-
ceptable, if, and only if, such inequality does not reflect a illegitimate variation in the
incomes, i.e. if yi = yj.
It is possible to individuate the illegitimate sources of inequality in the health status
by knowing the exact relation each individual shows between her health, income and
lifestyle. If we observe people’s health at a given reference lifestyle l̃, we can evaluate
the Direct Unfariness between two individuals by measuring the difference:

h̃i(yi, l̃)− h̃j(yj, l̃) (4.6)

The inequality within types is preserved while the between types heterogeneity is
neglected in the measure of direct unfairness. Formally, it respects the principle of
compensation, and it preserves consistency with the reward principle at least for each
reference effort degree addressed.

When hi(yi, li) = hj(yj, lj), such equality is considered being fair if and only if
li = lj. If we observe people’s health at a given reference income y∗, we can measure
the Fairness Gap by measuring the difference:

h∗i (y
∗, li)− h∗j(y∗, lj) (4.7)

2See also Brunori (2016) for further discussion.



4.2. INEQUALITY OF OPPORTUNITY: FROM THEORY TO PRACTICE 77

In this case, the inequality within tranches is preserved by the counterfactual dis-
tribution, and the inequality between types is observed with respect to a reference
type.

The fairness gap is consistent with the principle of reward for the reference circum-
stance, it being insensitive to changes in inequality within the reference circumstance.
Moreover, it is fully consistent with the principle of compensation, and because of being
obtained with respect to a reference type, it preserves the differences across types.

As already underlined, the model itself is based on the assumption that the health
status can be described by an additive and separable function of income and lifestyle.
Thus, applying the appropriate identification of the structural model, it is possible to
decompose each effect as a function of two distinct phenomena.

An empirical application would translate this assumption in the researcher’s nor-
mative belief with regard to the individual health condition formation and the identifi-
cation of the different "legitimate" and "illegitimate" actions in determining individual
health.

Wrapping up the presented models, the outlined theory of IOP admits that soci-
ety may have distorted rewards due to some context factors that should be consid-
ered morally not acceptable. Given the strong ideological implications in assigning
responsibilities to the people, the IOP models considered the effort as being a result of
both arbitrary and non-arbitrary factors. More specifically, the IOP models provide a
framework to analyse the mutual influence of circumstances on the outcomes through
the efforts. Such modelling exercise aims to guarantee a meritocratic reward within
societies, providing an equalisation policy on the non-arbitrary sources of inequality.
Although meritocracy can be ideologically questionable in the real societies, we believe
that it is worth investigating the deep relations between the person’s conditions and
the socioeconomic context.

4.2.2 Estimation methods and IOP measurement

The models of Inequality of Opportunity are basically looking at outcome inequalities
through a multidimensional perspective which is given by the observation of different
opportunity sets.

Different opportunities imply different problems and needs and, as a consequence,
heterogeneous interactions between effort, choices and final outcome. For this reason,
Roemer and Trannoy (2015) are defining the equality of opportunity as a process which
varies in time and across societies. The empirical approaches to measure the Inequality
of Opportunity Index have partly addressed the issue of disentangling the direct and
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indirect effect of circumstances. Most of these examples instead focus on measuring the
effect of the observable circumstances, without really considering their indirect effect
through the effort.

In practice, the inequality of opportunity index is computed on a transformed dis-
tribution of the outcome which captures the sole influence of the opportunity set on the
outcome (also named counterfactual distribution). The IOP index generally measures
a reduced portion of the whole inequality, capturing only the between-types compo-
nent. The measurement approach varies in the literature, respectively for measuring
the Roemerian ex-ante or ex-post inequality.

The empirical contributions providing the measurement of the ex-ante IOP index
is using the within-type outcome means as the counterfactual distribution coordinate.

The non-parametric estimation approaches are initially operating a population par-
titioning into types.3 Van de Gaer (1993) proposed to compute the smoothed income
distribution Ỹ EP by replacing the individual income of each component of the group-
type with the type-specific mean income:

µki =
1

Nk

∑
i∈Tk

yki , (4.8)

where Tk is the kth type and Nk is its size. µki represents a benchmark income associated
with the type, it represents the opportunity set accessible to people. The absolute
level of IOP is the measure of inequality between all the mean incomes for each type:
Ỹ EA = I(µki ), ∀i = (1, ..., N) individuals and ∀k = (1, ..., K) types. The relative
amount of unfair inequality over the total inequality has been generally presented as
the ratio of the absolute ex-ante IOP index over the total inequality index.4

Non-parametric or semi-parametric approaches require to define the population par-
titioning into the Roemerian types. At the cost of some discretionality in the functional
form structure, with the parametric approach the counterfactual distribution is esti-
mated using the regression coefficients derived form the outcome generating function.
The parametric approach does not require the realisation of a population partitioning
á lá Roemer. Bourguignon et al. (2007) and Ferreira and Gignoux (2011) propose to
estimate the outcome counterfactual distribution by training a reduced form of the
outcome generating function. The ex-ante parametric approach defines the outcome

3This operation shows several potential problems which will be discussed in Section 4.2.3.
4Alternatively, another transformation adopted is the standardised advantage distribution: νki =

yki
µ
µk . In this case, the between-groups inequality is eliminated through a re-scaling operation of the

subgroup-means used for the index calculation.
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generating function as follows:

y = f(C,E(C, ν), u) (4.9)

Assuming linearity and additive separability of the functions f and E, it is possible to
estimate the reduced form of the outcome yi of individual i in terms of her character-
istics Ci with a simple log-linear regression: ln yi = Ciβ + εi.

The coefficients β are representing the overall effect of the circumstantial character-
istics of i to the outcome, without distinguishing their direct and their indirect effects
as function of efforts E(C, ν). According to Roemer and Trannoy (2015) this approach
can be associated with the estimation of a reduced form of direct unfairness as defined
by Fleurbaey and Schokkaert (2009). The counterfactual distribution in this case coin-
cides with the predicted income obtained with the estimate β̂ (Ferreira and Gignoux,
2011), p.634.

µ̂YEA
= exp[Ciβ̂] (4.10)

The smoothed income of individual i is obtained by ignoring the residuals and count-
ing only the role of the observed circumstances in determining the income. The vector
µ̂YEA

is a parametric analogue of the smoothed distribution shown in the equation
(4.8).5

The ex-ante approach has been very popular in the IOP measurement due to its very
simple computation. By contrary, this approach has been criticised because it literally
ignores the interplay between the circumstances and the effort providing an incomplete
measure of unfair inequalities (Fleurbaey et al., 2017). We can observe two different
ways to deal with the analysis of the effect of circumstances on the outcome through
the effort. On one side, non-parametric approaches for ex-post IOP assume that the
effort distribution is a characteristic of the type itself, while its relative distribution
is informative about the indirect effect of circumstances. On the other side, there are
parametric approaches which propose a modelling framework to reduce the variance
explained by the error term in equation 4.10 through the inclusion of the effort.

The ex-post non-parametric IOP measures generally refer to the Roemer Identifica-
tion Axiom for identifying the unobserved relative effort and deriving the counterfactual
distribution to which the inequality measure is applied. Checchi and Peragine (2010)
propose to weight the income of individual i with the average income divided by the

5Ferreira and Gignoux (2011) p.634 present the parametric analogue to the standardised distri-
bution as the predicted standardised income distribution: ν̂YEP

= exp[C̄i β̂+ ε̂]. Where ν̂i represents
the retaining of the within-type variation.
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average income over the same tranche of i.

ỹi = yki (π)
µ

µπ
, (4.11)

where µπ = 1
Nq

∑
i∈Πq

yi, Πq is the qth tranche, or quantile of effort, and Nq is the size
of tranche-group q.

With the ex-post approach it is necessary to estimate the whole distribution of the
advantage within each type, not only its first moment as in the case of ex-ante approach.

The ex-post parametric IOP measurement, instead, brought in a two-stage esti-
mation which accounts to the indirect effect of the socioeconomic background on the
outcome through the effort.

An interesting example is provided by Jusot et al. (2013), who proposed a linear
parametric estimation of a structural model of health inequality by using individual
health-related behaviours as proxies of effort.

Let, for the sake of simplicity, the health status to be determined by a single cir-
cumstance and a single effort variable. The estimation procedure takes place in two
stages. First, the effort is estimated as a function of the circumstance:

ei = γ0 + γ1ci + νi (4.12)

Second, the general health equation is estimated by plugging the predicted effort and
the regression residual of the equation (4.12):

hi = β0 + β1ci + β2(γ̂0 + γ̂1ci + νi) + ui (4.13)

which can be expressed as well in the following way:

hi = α0 + α1ci + εi (4.14)

where α0 = β0 + β2γ0 and α1 = β1 + β2γ1 and represents the total contribution of
the circumstances (direct and indirect). The residual term εi = β2νi + ui contains the
direct effect of effort and a zero-mean error term. In this way, it is possible to derive
the indirect effect of circumstances through the effort observed with the variation in
the type-specific estimated effort, êc, and the direct contribution of effort with the
difference between the observed effort and the type-specific effort ei − êc.
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4.2.3 Criticism around the traditional empirical applications

The variety of estimation approaches clearly shows how complex is the process of
translating the theory to the practice. Despite the richness of the data sources, there
are several potential biases emerging with the estimation of inequality of opportunity
in the real world.

First, the circumstance set provided by data is incomplete. We will always lack
of some unobserved socio-demographic circumstances that matter in the process of
defining the outcome inequality across people. As a consequence, the IOP estimators
could be lower-bounded in representing the real inequality of opportunity (Ferreira and
Gignoux, 2011). Second, in non-parametric estimations, the course of dimensionality
due to an excessive number of partition units is very likely to take place. Hence, the
too small sample size of certain types leads to biases in the estimated counterfactual
distributions. Third, in order to deal with the first two issues, researchers arbitrarily
refer to ad hoc definitions of types, which may ignore unobserved non-trivial social
groups (Brunori et al., 2018; Donni et al., 2015). Fourth, Brunori et al. (2019) discuss
the risk of IOP overestimation given by the dependence of the IOP estimates on the
type-specific sampling distributions. Fifth, in parametric estimations, circumstances
may be wrongly identified as fixed and additive. Notwithstanding, in many cases, they
interact with each other and have a different effect according to other characteristics
(Hufe and Peichl, 2015). Last, as a vicious cycle, Brunori et al. (2018) stressed that too
accurate model specification in parametric estimations may lead to model overfitting
and as a consequence, to upward-biases in the IOP estimates.

4.2.4 A new generation of Inequality of Opportunity Indices

There are two main issues related with the presented IOP estimation techniques. First,
by adopting traditional parametric estimations we assume a single statistical model to
be holding for the entire sample, and we estimate the coefficients indicating a constant
relation among the dependent and the explanatory variable. However, it can happen
that different parameters hold for different subgroups (types). Second, non-parametric
approaches applied to the hand-generated Roemerian types allow for deriving the type-
specific counterfacutal distribution across different groups, but suffer over the course
of dimensionality.

The new methodologies to construct IOP indices can be classified according to the
solutions introduced in either directions. On one side, there is the adoption of data-
driven techniques for dealing with the population partitioning avoiding the curse of
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dimensionality (Brunori and Neidhöfer, 2020; Brunori et al., 2018; Davillas and Jones,
2020; Donni et al., 2015). On the other side, there has been a data-driven technique
dealing with both partitioning and type-specific model estimation (Carrieri et al., 2020).

Among data-driven techniques adopted to perform population partitioning, we can
distinguish two main approaches: Latent-Class Analysis (LCA) and tree-based meth-
ods. Both approaches use the information provided by the data to reduce the total
amount of groups in a sample, and maximising the between-groups variance explained.

Tree-based methods derive from decision trees which, in statistics, can be used to
visually represent the “decisions”, or if-then rules, that are used to generate predictions.
There are essentially two key components to building a decision tree: determining which
features to split on the prediction sample and setting a rule to stop splitting. Tree-based
methods aim at obtaining predictions for an outcome variable h as a function of a set of
input variables C = (C1, ..., Cp, ..., CP ). Specifically, they use the set of input variables
to partition the population into a set of non-overlapping groups (terminal nodes, or
leaves of the tree). The partition is performed as far as there is a significant difference
in the distribution of the dependent variable conditional on a specific realisation of the
input variables. In other words, they test the null hypothesis of independence between
the outcome and the input variables:

HCP

0 : D(H|CP ) = D(H) (4.15)

for each realisation of every input variable, and obtain a p-value with each test. After-
wards, the rule to stop the splitting will determine whether the p-value is statistically
significant.

Brunori et al. (2018) propose an application of tree-based methods adopting the
conditional inference trees training algorithm and testing whether the socioeconomic
circumstances of a person significantly cause the income conditional distribution vari-
ation. This approach has been associated to a test for the existence of inequality of
opportunity (Brunori et al., 2018), where the presence of a split implies that the ex-
pected income is statistically varying according to different realisations of individual
circumstances.

Latent-Class Analysis is a data-driven approach which takes as inputs all the pos-
sible discrete grouping variables and finds K latent groups in the population which
contain a combination of those variables, each characterised by different conditional
probability distribution.
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While both techniques efficiently reduce the number of groups, the LCA provides
less easy-to-interpret results requiring a successive decomposition of the latent classes
in order to obtain the non-overlapping groups as defined by Roemer. Notwithstand-
ing, the tree-based approach turned out to be more handy than LCA in the definition
of the Roemerian types and in the investigation of the structure of the opportunity sets.

The very recent contribution of Carrieri et al. (2020) presents an extension of the
use of data-driven techniques to the more complex task of disentangling the direct
and indirect effects of circumstances, considering as well some proxies of health-related
effort. In other words, they provide an estimation of the overall relation between
health, lifestyle and circumstances that is peculiar for each latent class identified as a
Roemerian type.

The authors adopt Finite Mixture Models (FMM) to perform the population parti-
tioning and to exploit the unobserved type-specific heterogeneity that characterises the
outcome-to-effort relation. FMM is a model-based clustering algorithm,6 that treats
the distribution of the data as a mixture of K distributions, each appearing with mix-
ing proportion where the class assignments (clusters) are unknown and learned from
the data. In their paper Carrieri et al. (2020) use FMM to explore the information
on the heterogeneous relationship between outcomes (health conditions) and regressors
(health-related behaviours) within the various socioeconomic circumstances that the
individuals are facing. It is hereby presented an alternative data-driven methodology
in order to perform the estimation of the health-to-lifestyle relation and derive the
socioeconomic population subgroups: the Model-Based recursive Partitioning (MOB).

Zeileis et al. (2010) technically formalised and implemented the MOB. Differently
form the FMMs, the MOB is a tree-based technique. In the next paragraphs it will be
provided a brief illustration and comparison of both techniques within the context of
IOP in health estimation.

Let the individual health conditions hi be described by two observable factors,
lifestyle and socioeconomic background, respectively the effort ei and the circumstances
ci of the IOP model. Let the following function be describing the health generating
process for a given lifestyle and socioeconomic background:

f(hi|ci, ei) (4.16)

6FMM represent a generalisation of the LCA because they do not necessarily need discrete parti-
tioning variables.
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The IOP framework requires the estimation of a linear model such as

hi = xTi β + εi (4.17)

where xT = [ci, ei]. If there are social groups for which this linear relation systemat-
ically changes, the coefficients vector β would not efficiently hold for all n observations.
Therefore, there would be a certain amount of population subgroups for which the β
parameters are better defined.

The aim of the IOP framework is to individuate the K different subgroups (types)
of the initial population, based on ci, for which a linear model estimating the response
of health to effort fits best. Hence, we can represent the full model as a weighted sum
of the k = 1, ..., K models associated with each subgroup parameters β(k):

f(hi|ci, ei,β(1), ...,β(K)) =
K∑
k=1

πk(ci) · f(hi|ei,β(k)) (4.18)

depending on the adopted technique between FMM and MOB, the weight πk(ci)
and the subgroup models will be identified with a different process.

Finite Mixture Models

In the FMM, the conditional density of the health outcome, eq. 4.16, is assumed to
be drawn from a population which is characterised by a finite additive mixture of K
distinct clusters, eq. 4.18, each one assigned with proportions that are function of
the circumstances πk(ci). Each subgroup corresponds to a component, and for each
component a linear regression of hi on ei is estimated. Thus, the estimated coefficients
for each parameter vary across the components. The overall mixture of models is ob-
tained aggregating each component model with the corresponding circumstance-related
weight. Generally, the weight represents a smooth and monotonic transition from one
component to another (Frick et al., 2014). The estimation of all possible K models is
performed with Maximum Likelihood obtaining βk subgroup-specific parameter esti-
mates. The selection of the optimal K number of latent classes is usually subject to a
statistical information criterion.

The parameters are necessary to estimate the posterior distributions for the mem-
bership of each individual in the K classes. The posterior density will be used to form
the population partitioning. Carrieri et al. (2020) performed the partitioning following
the technique of the modal assignment by placing each individual into the type with
the highest posterior distribution.

The final types are not clearly identifiable in terms of circumstances, indeed, they
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will be described by a mix of the characteristics not easily associated with a social group.
The identification is done as well following the modal assignment rule, specifically
through the estimation of the posterior distribution conditional to specific realisation
of each circumstance. Therefore, this process could be somewhat convoluted and not
easily adaptable to the identification of social classes as IOP aims at. This may happen
due to the fact that some circumstances may be almost equally identify more than one
latent types in terms of posterior probabilities, i.e. if there are two latent types and the
posterior for being a migrant is respectively 0.51 for type A and 0.49 for type B, with
the modal assignment rule, we would say that the type A represents migrants without
anymore considering that type B is representing migrants the 49% of times.

Model-Based Partitioning

The Model-Based recursive Partitioning is an algorithm which estimates a full model as
shown in eq. 4.17, and assess the parameters’ instability for all specified covariates (ci).
The estimation of the model can take place either with OLS or ML techniques. In either
cases, given the observation of the dependent variable, the parameter coefficients of the
model are derived by optimising the objective function. When a model fits well, we
should see that the sum of the deviations of the estimated ĥi from the observed hi should
approximate zero. However, if the parameters change along a specific partitioning
variable cik we would observe "systematic deviations from zero" (Frick et al., 2014).
As a consequence, the full model might not be the best solution though we should
account for the c orderings.

By means of Generalised M-fluctuation tests (Zeileis and Hornik, 2007), it is possible
to compute a statistic summing all the deviations along a categorical partitioning
variable.7

If the fluctuation test statistic turns out to be highly significant with respect to a
certain threshold α, we are rejecting the hypothesis of no-instability and we prefer to
split the sample and estimate two distinct models for two distinct realisations of c.

Schematically, Zeileis et al. (2010) illustrate the steps of the algorithm as follows:

1. Fit the model hi = α+ei β given the set of all the potential partitioning variables
c1, ..., ck, i.e. estimate the model in the entire sample.

2. Check whether there is any partitioning variable causing parameter estimates
for the model to be unstable. If there is overall instability, select the variable
associated with the highest instability source, otherwise stop.

7This statistic is distributed as a χ2 and we can compute the Bonferroni-adjusted p-value for
testing its significance, (Zeileis et al., 2010).
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3. Compute the exact split point which optimises the objective function of the
estimation (OLS or ML type) according to the selected unstable partitioning
variable.

4. Split the node into child nodes and restart the procedure, i.e. estimate the same
models into different subgroups.

The output of the model-based recursive partitioning algorithm depends on a tun-
ing parameter α which determines the p-value threshold for performing each split.
More specifically, the α parameter is used as a threshold measure for assessing the sta-
tistical significance of the instability test that the MOB performs before splitting the
sample. Thus, this parameter determines the depth of the output tree. The tuning of
the algorithm can be performed with a machine-learning technique ensuring that MOB
stops splitting the sample when no further split would result in a better out-of-sample
fit of the data. In this paper, the tuning of the algorithm is performed by 5-fold cross
validation. The critical p-value selected is 0.105. This means that the out-of-sample
mean-squared-error in predicting individual health is minimised when MOB is allowed
to split the sample until it is possible to reject the null hypothesis of a same α̂,β̂ ob-
taining a p-value ≤ 0.105.

The final model can be represented as a tree for which all the branches are associ-
ated with the split of the sample determined by the instability test, and the terminal
nodes are the sub-samples used for the final fitted models. In the IOP framework, each
terminal node describes a population type according to which splitting path brings to
it. The full model weights describe the path to the terminal node as the product of
all the splits leading up to the node. Differently form the case of FMMs, the weights
represent abrupt variations in the model behaviour and, when we have multiple splits
for the same covariate, the tree is representing a non-monotonic transition from one
subgroup to another (Frick et al., 2014).

Following the discussion of Frick et al. (2014), the two models have different abilities
in detecting the correct subgroups given certain characteristics of the model: i) how
strongly the relationship between the dependent and the regressor differ across groups;
ii) the level of association between the partitioning variables and the groups.

In the IOP framework, the former can be interpreted with the following questions:
to what extent the effort is indirectly determined by the circumstances? Do we observe
a stable or variable relation between lifestyle and health across social groups? Is there
a strong association between a given circumstance realisation and the definition of a
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population type? From the perspective of inequality of opportunity in health, a more
equal word with respect to opportunities would be the one in which the effort-to-health
relation is stable and there are no relevant social groups. Given that the real world is
far from being like that, we need the tool that better responds to the capabilities to
detect these aspects in the modelling framework.

Frick et al. (2014) provide a simulation to investigate how these techniques vary
according to the data characteristics. Their simulation brings the following considera-
tions:

• if there is a strong association between the partitioning variables and the groups
formed, the MOB is able to detect smaller variations in the type-specific coef-
ficients, β(k), than FMM because they employ a significance test for the single
parameter.

• by contrary, FMMs are able to detect latent subgroups even when there is no
association with the covariates (as far as the latent groups reflect significant
differences in the β(k)).

• FMMs better perform groups when the partitioning variables simultaneously de-
termine them.

• the MOB has a better performance in the instability checking, when both impor-
tant and least important partitioning variables are included in the test

• if the association between the partitioning variables is smooth and monotonic,
FMMs perform a good partitioning.

• When the groups are strictly identifiable with abrupt shift form a category to
another, the MOB is more suitable technique for partitioning

The FMM is more concerned in individuating, among all possible group-specific
estimated models, when parameters are varying. MOB is instead more concerned with
the partitioning variables, and how they interact with the full model.

In the context of IOP in health and the choice of the more adaptable empirical
methodology, we face a trade off. If we are remarkably concerned with meaningful
social groups detecting, we might prefer the model-based partitioning technique. If we
aim at individuating some tight variations in the relation between health and lifestyle
and investigate afterwards whether they are influenced by socioeconomic conditions or
not, the latent-class analysis is a suitable technique.
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As already anticipated, in this paper the MOB technique is preferred. Hence, the
priority of the study is to identify meaningful social groups and perform a group spe-
cific analysis of the health-to-lifestyle relation. In this paper, a model-based recursive
partitioning is specified to compute the direct unfairness and fairness gap measures of
IOP in health á lá F&S.

4.3 Estimation Strategy

The estimation strategy comprehends the tuning of MOB algorithm and the compu-
tation of Direct Unfariness and Fairness Gap.

The health condition is modelled as a linear function of life-style, but the param-
eters of the function are not assumed to be the same across individuals characterised
by different socioeconomic background.8 Hence, the MOB output coincides with a
tree whose k terminal nodes are populations subgroups used for estimating k linear
regressions as:

hi = αk + βkei (4.19)

for k = (1, ..,m) terminal nodes.
For computing the counterfactual distribution H̃DU and H̃FG the inputs are the

type population partition, the effort levels and the consequent tranche partitions into
type-specific effort degrees, and the type k estimated coefficients of the health-to-effort
relation, α̂k and β̂k.

As shown in section 2.1, in order to compute the H̃DU , the health status of each
individual has to be fitted by assuming everyone is exerting the same reference effort.
Being the effort, or lifestyle behaviour, in absolute terms related with socioeconomic
factors, the analysis presented refers to the Roemerian approach to applying the tranche
partitioning. To do so, the tranche groups have been obtained by looking at the type-
specific degree of effort. Consequently, the reference effort ēq is obtained by averaging
the level of effort within each tranche. Given that the degree of effort is grouped into
5 quantiles q we obtain a direct unfairness measure for each quantile-specific reference
effort.

h̃k,qi = α̂k + β̂kēq, (4.20)

8The outcome of the estimation can be easily compared with the outcome of Carrieri and Jones
(2018), who implemented the same linear model estimation after having performed the classical Roe-
merian type partition (semi-parametric approach).
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The inequality measure is obtained by computing the variance of the counterfactual
distribution:

DUq = I(h̃k,q) = var(h̃k,q). (4.21)

The fairness gap counterfactual distribution, ỸFG, is obtained by subtracting the
health fitted with the jth reference-type coefficients α̂j and β̂j to the actual fitted health:

h̃ji = α̂k + β̂kei − (α̂j + β̂jeqj) (4.22)

where ĥi = α̂k+β̂kei, and eqj is the average effort computed within the jth individual
i specific tranche.

In other words, after having imposed a between-type constant health-to-effort re-
lation, we observe the different health outcomes achievable by each observed effort
level.

The inequality measure is obtained by computing the variance of the counterfactual
distribution:

FGj = I(h̃j) = var(h̃j). (4.23)

This measure reduces the total explained variability by removing the variability
associated with a specific socioeconomic condition. When, for j 6= k, this difference is
higher than zero it means that the society is rewarding more the effort of the type k
people than type j people.9

4.4 Data

The data adopted comes from a sub-sample of the Wave 2 (2010-2011) of UKHLS. The
UKHLS is a survey conducted in the UK on a General Population Sample. Within
the whole population interviewed for the wave 2, it has been considered only the sub-
sample of respondents with non-missing objective health status variable and lifestyle
information. The considered sample contains 5,561 observations, that is approximately
the 10% of the whole sample in the wave 2. Thus, the possibility to observe an objective
health measure comes at the cost of having a sub-sample which cannot fully represent
the whole population as the original sample of the UKHLS data. The variable repre-
senting the health status is a composite biological measure of health condition based on

9Note also that when estimating eq. 2 and 3, one is implicitly assuming that the error term in eq 1
is not to be considered part of unfair health inequality. An alternative approach could be considering
the error term as part of the unfair inequality and add the term ui = hki − α̂k − β̂kei.
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parameters such as adiposity, blood pressure, inflammation, blood sugar levels, choles-
terol levels. These observations are part of a special module in the UKHLS survey
which have been nurse-based collected in waves 2 and 3. The allostatic load index has
been computed and used as a measure of health status by Davillas and Pudney (2020),
and in the IOP framework by Davillas and Jones (2020). In their paper - at p.7 - they
define it as:

(...) an overall assessment of a respondent’s physiological condition.
(Allostatic load is) elevated when a person’s biological systems are affected
by repeated stressors, resulting in persistently elevated or altered levels of
a number of biomarkers associated with ‘chronic stress’.10

Table 4.1 shows the descriptive statistics of the allostatic load variable and the
effort variable.

Table 4.1: Summary statistics: Allostatic load (H) and Effort (E)

N Mean St. Dev. Min Pctl(25) Pctl(75) Max

H 6,292 −0.000 0.840 −2.728 −0.562 0.502 4.907
E 5,561 5.210 1.741 −0.473 3.964 6.598 9.114

The variables describing the socioeconomic background have been used as splitting
variables in the model-based partitioning estimation. The allostatic load measure has
been adjusted for the individual age in order to control for the age-specific variability
in health. The age-adjustment is performed by regressing individual allostatic load
on a polynomial of order two for the age of the person recorded by the nurse at the
moment of the health dimensions collection. Controlling for the age it implies that we
assume this category to be unproblematic for what concerns the health inequalities.

The partitioning variables are: ethnic group, place of birth, father and mother occu-
pation, mother and father education, mother and father activity status (all information
about parents are referring to the period in which the respondent was 14).
Table 4.2 shows the frequencies of each circumstance category within the sub-sample.

Due to the presence of some missing data present in the variables describing the
parental education and skills11, the missing data have been imputed adopting a lin-
ear model-based imputation technique (R Hmisc package / function: aregImpute).12

10A more detailed explanation is provided in the Appendix C.
11The missing cases linked with the respondent’s parent not being alive or living in the household

at respondent’s age of 14, have been excluded from the imputation. A general summary on the missing
categories is available at table C.1 in Appendix C.

12Harrell Jr (2019)
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Table 4.2: Descriptive statistics - Circumstances
Variables Frequencies (%)
Ethnic group

uk white 91.94
irish white 0.78
other white 2.32
mixed 0.94
asian 2.69
african or arab 1.33

Mother occupational skill-level
High skill 9.19
Medium high skill 8.60
Medium skill 27.54
Low skill 14.32

Father occupational skill-level
High skill 16.62
Medium high skill 42.48
Medium skill 26.67
Low skill 9.79

Mother education
not educated 1.16
primary 48.06
secondary 29.78
upp sec./tertiary 21.00

Father education
not educated 0.95
primary 43.61
secondary 21.20
upp sec./tertiary 34.23

Mother activity status
Working 59.11
Not working 39.02
Decreased 1.34
Unknown 0.53

Father activity status
Working 88.74
Not working 4.12
Decreased 4.07
Unknown 3.07

The imputers are all the observable circumstances, educational attainment and gender.
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Effort variables considered are: smoking and drinking behaviours, dietary habits
(bread/milk/fruit/vegetable), sport activity, sedentary life style. The variables of ef-
forts are summarised in a scalar obtained by Principal Component Analysis (PCA).13

More specifically, the outcome variable from the PCA analysis represents a measure
of effort in the overall health-related behaviour, namely the lifestyle. As shown in the
correlations table (table 4.3), this variable correlates with the behaviours consistently
with a definition of “healthy behaviour”.14

Health and Lifestyle Effort
Eat fruit 0.516***
Eat vege. 0.438***
Milk habits 0.203***
Bread habits 0.193***
White bread only -0.320***
Smoking habits -0.396***
Ex-smoker 0.051***
Sport self-ass. 0.471***
Sport frequency 0.305***
Walking 0.769***
Drinking habits -0.010

Table 4.3: Correlation between effort and lifestyle variables

4.5 Estimation Results

An important step to take before presenting the estimation results is to analyse the
overall relation between the objective health status and the effort variable. As it
emerges from the figure 4.2, the allostatic load level and the effort exerted are nega-
tively and significantly related. This outcome is coherent with the interpretation that
a good lifestyle has an impact in reducing the physiological effects of chronic stress.
Although their correlation is negative and statistically significant, the two variables
do not show, from the scatter plot, to have a clear fit; which means that effort is far
from being sufficient on its own to explain health status. Thus, notable improvements
are expected from the implementation of the MOB which will consider whether this
relation fits better for different socioeconomic background variables.

13An illustration on the procedure adopted is available in Appendix C.
14As in Davillas and Jones (2020), some problems were encountered when drinking behaviours

were present. This is partly solved using a dummy for heavy drinkers that positively correlate with
allostatic load and negatively (although the correlation is not significant) with the variable of effort.
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Figure 4.2: Relation between allostatic load and effort

The model estimation led to four significant splits and five terminal nodes defining
the relevant socioeconomic background characteristics for the health-to-effort relation
determination.

The terminal nodes identifying the population types are:

• Node 2: father with high skill occupation

• Node 5: father unemployed, UK white or other white

• Node 7: father with low/medium/medium-high skill occupation, UK/other white,
mother with low education (primary)

• Node 8: father with low/medium/medium-high skill occupation, UK/other white,
mother with up to tertiary education (secondary with or without certification,
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tertiary)

• Node 9: father with up to medium/high skill occupation, African, Asian, Caribbean
or mixed ethnicity

Figure 4.3 shows the MOB tree outcome and table 4.4 shows the type- specific
coefficients of the linear allostatic load-to-effort regression.

For simplicity, whenever reference is made to terminal nodes, the terminology ’pop-
ulation types’ will be used, with each type being associated with the number of the
terminal node it refers to.

Figure 4.3: Model-based partitioning: Health to effort relation by circumstances.

As it emerges from the estimation results shown in table 4.4, the relation between
effort and allostatic load is always negative. For type 5 and 9 the response of health
to effort is lower in absolute term and not significant. Meaning that, for type 5 and 9,
no actual return to effort is visible in the health status.15

Figure 4.4 serves as graphical support to the estimation results shown in table 4.4.
However, this figure is showing the response of health to hypothetical effort levels thus
it is not representative of the true effort and health levels observed. Table 4.5 provides
the mean and variances of allostatic load and effort within each specific type.

It emerges that allostatic load is generally higher for who has a poor socioeconomic
background. Moreover, although poorer groups show a drastically lower return on
effort, this relationship does not spill over into a tendency towards riskier behaviour.

15This may be at least in part explained by the smaller sample size of the types.
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Indeed, while the type-specific health shown in table 4.5 significantly changes across
types both in its mean ad variance - even showing higher variability within worse-off
types -, the type-specific effort varies less. This is visible too when looking at the effort
density distributions for the different types, figure 4.5. This evidence leads us to the
conclusion that a different return to effort in the health outcomes does not determine
different behavioural choices among the observed individuals.

Figure 4.4: Health-to-effort relation by type

Table 4.6 provides the allostatic load distribution across types and effort quantiles
(tranches). The value in the cells represent the average allostatic load within all the
group belonging to a specific type and tranche. The table shows, unsurprisingly how
the allostatic load diminishes for higher effort quantiles but with a different magnitude
across the types. Indeed, disadvantaged types (type 5 and 9) have a high allostatic
load even when effort is high (q4 and q5 tranches).
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Type Mean(e) var(e) mean(h) var(h) weight (%)
2 5.5534 2.6548 -0.1778 0.6420 16.62
5 4.8233 3.4202 0.2640 0.7451 3.91
7 5.0352 3.1474 0.0719 0.7044 40.03
8 5.2873 2.9148 -0.0739 0.6872 34.28
9 5.2185 3.1499 0.3063 0.7024 5.15

Table 4.5: Within type descriptive statistics

Figure 4.5: Type specific effort densities.

Tranche
Type q1 q2 q3 q4 q5

2 0.1418 -0.0030 -0.3049 -0.2376 -0.3910
5 0.3770 0.2834 0.3933 0.1150 -0.0036
7 0.2901 0.1493 0.0668 -0.0706 -0.1883
8 0.2628 0.0209 -0.0953 -0.1404 -0.3365
9 0.2287 0.4278 0.2221 0.3808 0.0331

Table 4.6: Average health outcome by type and effort quantile

Finally, bootstrapped estimates of direct unfairness and fairness gap are provided.
The outcome tables show five DUs, one for each effort quintile, and five FGs, one for
every possible reference effort. The inequality index is the variance of the counterfactual
distribution. Tables 5 and 6 report the obtained measures. 16

16Note that in this case, the error term is part of fair inequality because it has been excluded
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Reference tranche Direct Unfairness Confidence Interval (95%)
q1 0.0065 [ 0.0021 ; 0.0146 ]
q2 0.0081 [ 0.0047 ; 0.0152 ]
q3 0.0112 [ 0.0074 ; 0.0173 ]
q4 0.0159 [ 0.0101 ; 0.0226 ]
q5 0.0231 [ 0.0121 ; 0.0319 ]

Table 4.7: Direct Unfairness for each specific effort quantile - Bootstrapped results

Reference type Fairness Gap Confidence Interval (95%)
Type2 0.0176 [ 0.0141 ; 0.0251 ]
Type5 0.0278 [ 0.0154 ; 0.0457 ]
Type7 0.0178 [ 0.0138 ; 0.0245 ]
Type8 0.0186 [ 0.0141 ; 0.0257 ]
Type9 0.0438 [ 0.0166 ; 0.0587 ]

Table 4.8: Fairness Gap for each specific reference type - Bootstrapped results

Before going through the results, it is worth recalling that the estimations of DU
and FG are computed on the predicted health status. Thus, all the inequality in health
that has not been explained within the model is not considered for the computation.

As it emerges from the two estimates tables, DU is monotonically increasing with
effort. This is due to the interaction of intercepts - a sort of types’ fixed effect - and
slopes - return to healthy life-style. When using DU we are evaluating inequality con-
sidering only one reference level of effort, thus, the measure is completely insensitive to
inequality in any other part of the effort distribution. This implies that, by assumption,
any difference in effort is full responsibility of the individual. Therefore, the unequal
health outcomes associated to different efforts are considered unproblematic. If types
with lower intercepts - better health condition when exerting zero effort - have also
higher returns to healthy life-style, they will tend to diverge in the DU outcomes from
the worse-off types. The measure of DU is more or less representing what shown in
figure 4.4 when fixing the effort levels to the reference values. Therefore, the inequality
measure is computed on the differences in the health outcomes on the y-axis of the
figure, that we observe at each corresponding effort level.

FG vary less than DU and is higher for the two types with lower return to effort.
Recalling the FG formula, the counterfactual distribution on which the inequality in-
dex is computed, is the difference between the actual predicted health and the health
obtainable in the case in which the return to effort was described by a certain reference

from the computation, this implies a low level of estimated unfair inequality with respect to the total
observed inequality.
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society. The reference society outcomes are obtained assuming that all the people at
each stage have exactly the same health-to-effort response, thus, the highest counter-
factual variability would emerge from the difference between observed health and the
health obtainable when the reference type is the worse-off type.

4.6 Conclusions

This study aims to provide both a methodological innovation to the IOP measurement,
as well as new insights on the health inequalities. The methodological innovation is rep-
resented by the adoption of the Model-Based recursive Partitioning for estimating the
health-to-lifestyle relation while considering the different socioeconomic background of
people. This paper encompasses an extended contextualisation of the MOB technique
in the IOP framework. Whilst, for what concerns the inequalities of opportunity in
health, a normatively defined responsibility-sensitive framework has been adopted to
empirically measure the Direct Unfairness and the Fairness Gap à là Fleurbaey and
Schokkaert (2009).

Among the main features of the MOB’s employment in IOP measurement is its
ability to capture those socioeconomic characteristics which are fundamental to deter-
mine a change in the conditional distribution of the outcome health-to-lifestyle model.
Hence, the MOB algorithm has been employed to estimate the type-specific relation be-
tween health and lifestyle. The empirical application was performed with data from the
UKHLS data (wave 2) on a subsample for which data on objective health status - the
allostatic load measure - is observable. It emerged that lifestyle plays a non-constant
role in determining health outcomes. Indeed, people with a more disadvantaged family
background experience worse health statuses on average. Despite that, it turns out
that the differences in health outcomes are not necessarily explained by substantial
variations in lifestyles; meaning that the lower return to effort is not reflecting an in-
centive to riskier behaviours for the disadvantaged people. Therefore, there is an “effort
return gap” which have socioeconomic origins. The computed DU and FG show that
the within-type inequality varies across the effort levels in a monotonic way. Poorer
socioeconomic conditions lead to a lower return to efforts and a higher overall gap with
respect to better-off types’ achievable outcomes.

As far as it emerged from the estimation results, the objective health can be only
partly described by the lifestyle, when their relation is let to vary in other socioeconomic
characteristics. Indeed, there are many aspects which are not included in the model
even though they are impacting the health status. Some of them are unobservable
to the researcher/policymaker, e.g. the genetic endowments or other possibly relevant
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socioeconomic information. Some others, however, could fit in the F&S formalisation
and should be taken into account, e.g. healthcare consumption and the role of public
healthcare services.

Given that the predicted health is used for the inequality computations, the in-
equality that is actually observed in the DU and FG is not considering the individual
deviations from the fitted results. These deviations contribute to the “unexplained in-
equality” which is, by assumption, excluded from the "unfair" inequality computation.
The extension of the model including other determinants of health could partly solve
this problem. Alternatively, a possible solution would be to work on the inclusion of
the whole unexplained inequality - the regression residual - within the DU and FG
computation. Due to the preliminary nature of this application, priority was given
to the exploration of the new techniques’ capacities rather then proceed with a more
accurate structural model definition. Last, the sub-sample of the data for which ob-
jective health was observable, may not be fully representative of the society. For this
reason, further implementation of this methodology should be its extension to a larger
and more representative database.
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Appendix A

Data and Tables

Table A.1 - A.2 - A.3 show the descriptive statistics for the selected leisure activities
observed respectively in years 2006, 2011 and 2016.1

Table A.1: Summary statistics - Year 2006

Variable Mean Std. Dev. Min. Max. N
TV 1.332 0.748 1 5 286
Pc games 2.983 1.469 1 5 286
Internet 2.615 1.58 1 5 286
Listen to music 1.297 0.829 1 5 286
Play music 3.479 1.654 1 5 286
Sport 2.451 1.235 1 5 286
Dance/act 3.727 1.31 1 5 286
Tech activities 4.024 1.255 1 5 286
Read 2.776 1.431 1 5 286
Relax 2.297 1.216 1 5 286
Girl/boyfriend 3.007 1.757 1 5 286
Best friend 1.913 0.96 1 5 286
Clique 2.367 1.217 1 5 286
Youth centre 4.350 1.071 1 5 286
Volunteer 4.077 1.29 1 5 286
Religious 4.255 0.978 1 5 286

1The frequencies reported in the table are referred to the original ordinal units assigned in the
SOEP data base. Precisely, 1 = Daily, 2 = Weekly, 3 = Monthly, 4 = Rarely, 5 = Never.
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Table A.2: Summary statistics - Year 2011

Variable Mean Std. Dev. Min. Max. N
TV 1.455 0.839 1 5 506
Pc games 2.779 1.605 1 5 506
Internet 1.358 0.791 1 5 506
Listen to music 1.172 0.570 1 5 506
Play music or sing 3.7 1.495 1 5 506
Sport 2.152 1.065 1 5 506
Dance or act 4.182 1.146 1 5 506
Do tech activities 4.028 1.205 1 5 506
Read 2.67 1.407 1 5 506
Relax 2.249 1.256 1 5 506
Girl/boyfriend 3.316 1.641 1 5 506
Best friend 2.006 0.976 1 5 506
Clique 2.285 1.208 1 5 506
Youth centre 4.427 0.977 1 5 506
Volunteer 4.221 1.161 1 5 506
Religious 4.213 1.02 1 5 506

Table A.3: Summary statistics - Year 2016

Variable Mean Std. Dev. Min. Max. N
TV 1.359 0.735 1 4 493
Pc games 2.15 1.429 1 5 493
Social network 1.562 1.17 1 5 493
Internet 1.627 1.021 1 5 493
Listen to music 1.249 0.699 1 5 493
Play music 3.805 1.507 1 5 493
Sport 2.363 1.162 1 5 493
Dance/act 4.32 1.061 1 5 493
Tech activities 4.256 1.122 1 5 493
Read 2.947 1.386 1 5 493
Relax 2.266 1.246 1 5 493
Girl/boyfriend 2.771 1.888 1 5 493
Best friend 2.172 0.965 1 5 493
Clique 2.554 1.218 1 5 493
Youth centre 4.55 0.950 1 5 493
Volunteer 4.191 1.195 1 5 493
Religious 4.323 0.906 2 5 493
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Table A.4 shows the estimation output of the mean difference significance test for
the Complexity scores.

Table A.4: Mean Difference Test

Mean diff.

Complexity 0.0659
(0.72)

N 506
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The t-statistic of the test is 0.7156 with 504 degrees of freedom. The corresponding
two-tailed p-value is 0.4746 so with a very high confidence we cannot reject the null
hypothesis of statistically equal means.

Table A.5 shows the same mean difference significance table for all the activities’
distributions.

Table A.5: Mean difference between the two samples

Mean diff.
TV 0.190∗ (2.47)
Pc games 0.283 (1.92)
Internet 0.087 (1.19)
Listen to music -0.006 (-0.11)
Play music or sing 0.064 (0.46)
Sport 0.047 (0.48)
Dance/act -0.142 (-1.35)
Tech activities -0.083 (-0.75)
Read 0.177 (1.37)
Relax -0.010 (-0.09)
Girl/boyfriend -0.292 (-1.94)
Best friend -0.101 (-1.12)
Clique 0.004 (0.04)
Youth centre -0.099 (-1.11)
Volunteer 0.107 (1.00)
Religious -0.007 (-0.08)
N 506
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure A.1: Summarising the average individual complexity by levels of life satisfaction -
Size of each level group
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Data and Tables

Figure B.1: Latent health estimates. Year 2018.
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Figure B.2: Housing Quality Index

Table B.1: Average diagonal dependence indices comparisons
H0 : δ̄m(X1) = δ̄m(X2) (Significance levels: *** 99%, ** 95%, * 90%)

δ̄m(X1) δ̄m(X2) p_vals
4 dim - NOJOB 4 dim - NOED 0,055*
4 dim - NOJOB 4 dim - NOHEALTH 0,000***
4 dim - NOJOB 4 dim - NOHOU 0,000***
4 dim - NOJOB 4 dim - NOINC 0,017**
4 dim - NOJOB ALL 5 DIM 0,005***
4 dim - NOED 4 dim - NOHEALTH 0,000***
4 dim - NOED 4 dim - NOHOU 0,002***
4 dim - NOED 4 dim - NOINC 0,001***
4 dim - NOED ALL 5 DIM 0,157
4 dim - NOHEALTH 4 dim - NOHOU 0,000***
4 dim - NOHEALTH 4 dim - NOINC 0,000***
4 dim - NOHEALTH ALL 5 DIM 0,000***
4 dim - NOHOU 4 dim - NOINC 0,000***
4 dim - NOHOU ALL 5 DIM 0,049**
4 dim - NOINC ALL 5 DIM 0,000***
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Figure B.3: Zoom of diagonal copula section
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Table B.2: Total population: Cumulative deprivation, gender and activity status
cum_dep
(0=No, 1= Yes)

tot
(thousands) gender activity

0 8402,479 Male Employed
0 2845,540 Male Self-Employed
0 11,370 Male Employed
0 1913,883 Male Unemployed
0 114,474 Male Retired
0 1110,906 Male Inactive
0 11,474 Male NA
0 128,219 Male NA
0 6904,124 Female Employed
0 1275,385 Female Self-Employed
0 10,058 Female Employed
0 1546,822 Female Unemployed
0 56,475 Female Retired
0 4551,212 Female Inactive
0 22,878 Female NA
0 100,370 Female NA
1 80,664 Male Employed
1 38,830 Male Self-Employed
1 172,384 Male Unemployed
1 7,641 Male Retired
1 58,854 Male Inactive
1 2,136 Male NA
1 5,065 Male NA
1 57,187 Female Employed
1 15,788 Female Self-Employed
1 75,590 Female Unemployed
1 1,804 Female Retired
1 376,702 Female Inactive
1 0,921 Female NA
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Data and Tables

Missing categories

Missing cases
Education 38

Ethinc group 40
Mother activity 83
Father activity 74

Mother skill 192
Father skill 240

Mother education 632
Father education 692

Female 0

Table C.1: Missing values among circumstance variables, net of the item missingness present
on purpose

Allostatic Load measure

A detailed illustration of how the Allostatic load measure has been obtained is following
from :

We calculated a composite risk score measure to proxy allostatic load af-
ter converting HDL, Albumin and DHEAS to negative values to reflect
ill-health rather than good health, and then transforming each of the nine
biomarkers into a z-score and summing to produce the composite measure.
The index is then scaled so that a 1-unit increase in allostatic load corre-
sponds to an increase of one standard deviation. Higher values of allostatic
load indicate worse health.
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The exact dimensions included are:

“We use waist-to-height ratio to measure adiposity and resting heart rate
(HR), systolic blood pressure (SBP) and high-density lipoprotein choles-
terol (HDL) to measure cardiovascular health. Lung function is measured
using a spirometer as forced vital capacity (FVC), the total amount of
air forcibly blown out after a full inspiration; higher FVC values indicate
better lung functioning. C-reactive protein (CRP) is our inflammatory
biomarker, which rises as part of the immune response to infection and is
associated with general chronic or systemic inflammation (Emerging Risk
Factors Collaboration, 2010). Glycated haemoglobin (HbA1c) is our blood
sugar biomarker, and is a validated diagnostic test for diabetes. Albumin is
used to proxy liver functioning, with low albumin levels suggesting impaired
liver function. We also use dihydroepiandrosterone sulphate (DHEAS), a
steroid hormone in the body, representing one of the primary mechanisms
through which psychosocial stressors may affect health, with low levels as-
sociated with cardiovascular risk and all-cause mortality (Ohlsson et al.,
2010).”

Principal Component Analysis and the health-related behaviours

Being the partitioning variables categorical data, the realisation of the principal com-
ponent analysis,is not immediate. Indeed, in order to compute the eigenvalues of the
data variance-covariance matrix, the variables are required to be numeric and to have
a meaningful and equal distance between each category. Thus, the PCA has been con-
ducted after computing the Polychoric transformation of the mixed data to obtain a
meaningful covariance matrix (R polycor package / function: hector).

The health-related behavioural variables used are:1

• Habits on drinking milk: whole milk, semi-skimmed milk, skimmed milk, soya
milk, any other sort of milk, don’t use milk. (usdairy)

• Habits on bread eating: white bread only, wholemeal bread, granary - wholegrain
- brown bread, no bread, other type of bread. (usbread)

• Eating fruit and vegetables: days per week eating a portion of fruit or vegetable.
(wkfruit, wkvege)

1The original variable name from the dataset is shown within the parenthesis. The variables used
for the analysis may have been modified with respect to the original.
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• Smoking habits: More than 20 cig. per day, 9 to 20 cig. per day, less than 9 cig:
per day.(smoking)

• Ex-smoker: dummy variable. (smoking)

• Sport activity: sport intensity in an ordinary week + self-assessed sport attitude.
(sportact, sportsfreq)

• Walking habits: number of days walked at least 10 minutes in a month. (daywlk)

• Drinking alcohol habits: drinking alcohol everyday. (scfalcdrnk)

Estimated model (R function: prcomp()). Model fit measure on how well does the
factor model fit the given correlation matrix: = 0.720. The resulting first component
of the PCA accounts for almost the 40% of the total variability of the data. Given
its positive correlation with the "bad behaviours", the upcoming variable has been
multiplied by (-1) in order to have a meaning of "good health-related behaviour".
The final outcome variable is a measure of effort in having a healthy lifestyle. Table
4.3 shows the correlations between the first component of the PCA output and the
behavioural variables involved in the analysis.
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"It happens", Blu, 2019
Casal de’ pazzi, Rome

This picture shows a coloured street art painting containing a dystopian description
of the world looking like an amusement park in which, everyone plays on a kids’ slide

and randomly ends up in one of three possible outcomes:
the rich, the poor, the guardians.

This piece of street art has been incredibly inspiring to me and to my research.
Being a metaphor of an unjustly unequal society, it is placed in a peripheral

neighbourhood of Rome where is settled Rebibbia, one of the mostly crowded jails of
the whole country.
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